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ABSTRACT
The camera is one of the most essential sensors for an autonomous
vehicle (AV) to perform Environment Perception and Simultaneous
Localization and Mapping (SLAM). To secure the camera, current
autonomous vehicles not only utilize the data gathered from multi-
ple sensors for environment perception and SLAM but also require
the human driver to always realize the driving situation, which can
effectively defend against previous attack approaches (i.e., creat-
ing visible fake objects or introducing perturbations to the camera
by using advanced deep learning techniques). Different from their
work, in this paper, we in-depth investigate the features of Infrared
light and introduce a new security challenge called I-Can-See-the-
Light-Attack (ICSL Attack) that can alter environment perception
results and introduce SLAM errors to the AV. Specifically, we found
that the invisible infrared lights (IR light) can successfully trig-
ger the image sensor while human eyes cannot perceive IR lights.
Moreover, the IR light appears magenta color in the camera, which
triggers different pixels from the ambient visible light and can be
selected as key points during the AV’s SLAM process. By leveraging
these features, we explore to i) generate invisible traffic lights, ii)
create fake invisible objects, iii) ruin the in-car user experience, and
iv) introduce SLAM errors to the AV.We implement the ICSL Attack
by using off-the-shelf IR light sources and conduct an extensive
evaluation on Tesla Model 3 and an enterprise-level autonomous
driving platform under various environments and settings. We
demonstrate the effectiveness of the ICSL Attack and prove that
current autonomous vehicle companies have not yet considered
the ICSL Attack, which introduces severe security issues. To secure
the AV, by exploring unique features of the IR light, we propose a
software-based detection module to defend against the ICSL Attack.

CCS CONCEPTS
• Security and privacy→ Side-channel analysis and countermea-
sures.
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1 INTRODUCTION
Recent autonomous vehicle (AV) developments have shown great
potential to improve driving quality and safety. With the support of
governments and private investments, the number of autonomous
vehicles on the road is estimated to reach 745,705 by the end of
2023 while the market size is projected to be valued at USD 24.73
Billion by 2027 [16, 17]. To enable self-driving, one of the most
fundamental components is environment perception, which utilizes
multiple sensors (e.g., Camera, Ultrasonic Sensor, Radar, or LiDAR)
to sense the environment. Then, based on the data gathered from
those sensors, a simultaneous localization and mapping (SLAM)
process is conducted to make proper driving decisions. During
these procedures, the camera is one of the most important sensors
for the AV to understand its surroundings and current locations.

To avoid the severe consequences such as injuries or fatalities
generated by the camera malfunctions, prior studies have been
conducted to investigate the potential security risks of the camera.
For example, researchers have shown that the camera can be easily
blinded by the light with high intensities [57, 77]. Moreover, by
applying deep neural networks, 𝑅𝑃2 is even able to create fake stop
sign to mislead the real road sign recognition system [38]. Built on
the top of 𝑅𝑃2, the attacker can introduce physical adversarial per-
turbations to fool the image-based Faster R-CNN object detectors
[35]. However, these works either require the attacker to have ad-
vanced knowledge of the hardware or required advanced machine
learning techniques. To overcome these challenges, researchers
have demonstrated that an unskilled attacker can alter the percep-
tion results of the camera by creating fake traffic signs or objects
using a projector [52]. Recently, according to the requirements of
current autonomous vehicles, the human driver should be always
aware of the driving conditions and be prepared to take control of
the vehicle. Therefore, since the fake traffic signs or objects created
by these attack methods can be perceived by the human eyes, the
driver can easily detect the potential attacks and manually con-
trol the AV in this scenario. Despite the failure of the attack, the
successful detection of the attack may also result in reporting to
the police officers for further investigation, which will increase the
possibility of exposing the identity of the attacker.

In this paper, we propose the work that in-depth investigates
the possibility of attacking the camera using invisible lights. Specif-
ically, we found that human eyes cannot perceive the lights with
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Figure 1: An example of ICSL Attack: (a) Generate invisible
fake red traffic signal; (b) Create invisible fake objects; (c) In-
tentionally create system alters to ruin the in-car user expe-
rience; and (d) Introduce SLAM localization errors. (During
the experiment, human cannot see the IR light.)

wavelengths larger than 740𝑛𝑚 while Infrared lights (IR lights) can
be detected by the cameras on the AV [9]. Moreover, the invisible
IR lights appear the magenta color in the camera, which is exactly
the same as the visible magenta light. In addition, since the IR light
triggers different pixels from the ambient lights in the camera, the
SLAM system in the autonomous vehicle tends to select the IR light
source as the key point for AV localization and mapping. Based
on these observations, we propose the I-Can-See-the-Light Attack
(ICSL Attack) by using IR lights. Different from simply blinding
the camera using visible lights [57, 77], we explore to leverage the
features of IR lights to i) generate invisible traffic signals, ii) create
fake invisible objects, iii) ruin the in-car user experience, and iv)
introduce SLAM errors to the autonomous vehicle. We believe that
by carefully selecting the attack scenarios and setting up the attack,
the AV can be attacked without the notice from the human driver.

To do this, we first analyze the architecture of the autonomous
vehicle. Then, we perform experiments to understand the features
of IR light and conduct a survey of human eyes to select the suit-
able IR lights to attack the autonomous vehicle (in section 2). By
leveraging the features of IR light, we demonstrate the effectiveness
of the ICSL Attack by altering the environment perception results
of a Tesla Model 3. A simple example is shown in Figure 1 (a), ICSL
Attack successfully generates an invisible red traffic light by using
IR light. Based on the experiment results, we also discuss the related
parameters that may affect the attack successful rate (in section
4.1.1). As shown in Figure 1 (b) and Figure 1 (c), to show severer se-
curity risks introduced by ICSL Attack, we continue to demonstrate
how attackers can utilize ICSL Attack to create invisible objects (in
section 4.1.2) and intentionally ruin the user experience (in section
4.2). To demonstrate the harmful impacts on the SLAM system of
an AV, we utilize an enterprise-level autonomous driving platform
to show the SLAM trajectories under ICSL Attack (in section 5.2),
which is shown in Figure 1 (d). At last, by analyzing the SLAM
errors, we propose a SLAM attack model to show how attackers
can control the SLAM trajectory of an AV by using the ICSL Attack.

To defend against the ICSL Attack, we propose a software-based
detection module to secure the autonomous vehicle. Specifically, it
is possible to implement IR filters on the camera to filter out the
IR lights. However, since there are more than 500, 000 autonomous
vehicles to be delivered each year and each vehicle has multiple
cameras [1], this hardware-based defense strategy will significantly
increase the cost for the autonomous vehicle company. On the other
hand, since the IR light appears the same as the visible magenta
color to the camera of an AV, it is difficult for the AV to distinguish
the IR lights from visible lights. To overcome this challenge, we
found that the IR light absorption rate is higher than visible light.
In other words, the camera cannot detect the reflections of IR lights
from other objects. By leveraging this unique feature, we propose a
simple and effective module to defend against the ICSL Attack. The
experiment results show the effectiveness of the proposed module
(in section 6).

The contributions of this paper can be summarized as follows:
• To the best of our knowledge, this is the first work that in-depth
analyzes the effect of invisible IR light on the autonomous vehicle.
According to our analysis, we propose the I-Can-See-the-Light
Attack (ICSL Attack). We leverage the features of IR lights and
introduce related parameters and models to i) generate invisible
traffic signals, ii) create invisible objects, iii) ruin the in-car user
experience, and iv) introduce SLAM errors to the AV.
• We conduct extensive real-world experiments by using a Tesla
Model 3 and an enterprise-level autonomous vehicle platform under
various scenarios and settings. The experiment results demonstrate
the harmful impacts of the ICSL Attack.
• To defend against the ICSL Attack, we explore a unique feature
of IR lights and propose a novel software-based detection module
to secure the autonomous vehicle. The experiment results show the
effectiveness of the proposed approach.
2 BACKGROUND
2.1 Environment Perception and SLAM in AV
Figure 2 shows a system architecture of an autonomous vehicle,
which consists of six parts: Environment Perception, Pre-processing,
Localization and Mapping, Sensor Fusion, Trajectory Prediction,
and Decision Making. The Environment Perception utilizes Camera,
Radar, Ultrasonic Sensor or USS, LiDAR, IMU, Wheel Speed Sensor,
and RTK GPS to sense the surroundings and understand the cur-
rent driving conditions (i.e., acceleration, orientation, and location,
etc). The data gathered from these sensors will be processed by
the Sensor Hub for synchronization and rectification, which will
then be categorized into different layers in the pre-processing step.
Meanwhile, the vision data from multiple cameras will be fused in
the localization and mapping step. To improve the environment
perception accuracy, the autonomous vehicle will perform sensor
fusion to better understand its surroundings. At last, in the trajec-
tory prediction and decision making steps, the fused data will be
used to predict objects’ trajectories and the driving decisions are
made based on the prediction results.

As we can observe from this architecture, Environment percep-
tion and SLAM in the Localization and Mapping are two important
parts for the vehicle to perform autonomous driving. For the envi-
ronment perception, it is the ’eyes’ for the autonomous vehicle to
understand its surroundings. For the SLAM, it is not only important
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Figure 2: A system architecture of the autonomous vehicle
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for the AV to improve the environment perception accuracy and
eliminate AV’s blind spots but also essential for the AV to make
driving decisions. Specifically, since the GPS sensor only provides
a coarse location information in an outdoor scenario, it is insuffi-
cient for the AV to conduct navigation and perform self-driving.
To overcome this challenge, the vision data gathered from multiple
cameras is used to understand the location and build a local HD
map to make driving decisions. For example, in an indoor parking
lot, the GPS signal is weak. In this case, the AV analyzes each frame
that captured by the camera and extracts the corresponding key
points. Then, a matcher will be generated to find the same key
points on consecutive frames. According to the position changes
of the matched key points, the AV’s location and trajectory is cal-
culated. At last, the local HD map will be built according to the
trajectory of the AV. By using this approach, the AV can understand
its location and exit the parking lot according to the local map.
2.2 Basics of IR Light and Camera
Infrared light (IR light) is the electromagnetic radiation with wave-
lengths varies from 740𝑛𝑚 to 3 × 105𝑛𝑚, which has been widely
used in industrial, scientific, military, commercial, and medical ap-
plications [4, 20]. For example, IR light can be utilized in security
cameras and Night-vision devices to capture nighttime images. To
do this, these devices need to detect the reflected lights from an
object by using IR light detectors. According to the requirements of
applications, the IR light detectors are made of different IR materi-
als, such as Calcium fluoride, fused silica and sodium chloride [14].
Normally, these materials should be carefully selected according to
their unique attributes in order to improve the IR light detection

(a) SONY IMX598 with 850nm IR light 

(c) SONY IMX598 with 940nm IR light 

(b) SONY IMX689 with 850nm IR light 

(d) SONY IMX689 with 940nm IR light 

Figure 4: The detected IR lights (850nmand 940nm) on SONY
IMX598 and IMX689

Men Women Total
larger than 780𝑛𝑚 3 4 7
larger than 900𝑛𝑚 0 0 0

Table 1: A survey of the IR light visibility.

accuracy and reliability. However, we found that the industry image
sensors that are not designed for IR light also can detect the IR light.

Specifically, current industry image sensors are either a Comple-
mentary Metal-Oxide Semiconductor (CMOS) or Charge-coupled
Device (CCD), which uses arrays of silicon to convert the inci-
dent light (photons) into electronic charge (electrons). As shown in
Figure 3 (a), since silicon has high sensitivity in both visible and
invisible IR spectrum, the image sensor can be triggered to detect
the invisible IR light [8]. However, human eyes are only able to
detect lights with wavelengths from 380𝑛𝑚 to 700𝑛𝑚 [10], which
is shown in Figure 3 (b). To prove the concept, we use 850𝑛𝑚 and
940𝑛𝑚 IR light LEDs (3W) to generate invisible light and test those
lights on the most recent SONY IMX598 and IMX689 [22] image
sensors. As we can observe in Figure 4, although different image
sensors have different IR light sensitivities, both 850𝑛𝑚 and 940𝑛𝑚
IR lights still successfully trigger the image sensors. In addition,
since the wavelengths of IR lights are close to the wavelength of
red light, the invisible lights are detected as magenta color lights in
the camera.

Ideally, the attacker can use any IR lights that close to 700𝑛𝑚 to
attack the AV without human driver’s notice. As the wavelength
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of selected IR light close to 700𝑛𝑚, the detected light intensity by
the camera will be high, which can increase the attack distance.
However, we found that some people can perceive lights with wave-
lengths that slightly larger than 700𝑛𝑚. This is because IR light
activates the human photoreceptors through a nonlinear optical
process, which enables human to visualize the near IR light [54].
To successfully attack the AV without human notice, we conduct a
survey of 100 men and 100 women with ages vary from 18 to 50
to see how many people can perceive IR lights. As shown in Table
1, only 3% of men and 4% of women can perceive IR lights with
wavelengths larger than 780𝑛𝑚 while no one can see the IR light
with wavelengths larger than 900𝑛𝑚. Since the lower wavelengths
IR lights can be detected by most of cameras with higher inten-
sity and the color is close to red, in this paper, we mainly utilize
780𝑛𝑚 − 850𝑛𝑚 IR lights to implement the attack.

3 ATTACK OVERVIEW AND THREAT MODEL
In this section, we first present the overview of I-Can-See-the-Light
Attack (ICSL Attack). Then, we introduce the threat model.

3.1 ICSL Attack Overview
Attack Goal. Our attack goal is to alter the environment percep-
tion and SLAM results of an autonomous vehicle embedded with
different sensors (i.e., Camera, Radar, USS, LiDAR and GPS etc). To
do this, we mainly attack the cameras on the AV by using invisi-
ble IR lights. As a result, the target vehicle will make unexpected
harmful driving behaviors. In the worst case, the autonomous vehi-
cle will wrongfully change its driving behavior, such as terminate
the autopilot mode, reducing its driving speed or even make un-
expected stop, etc. In order to make the human driver unaware of
the ICSL attack and the presence of attackers, we mainly utilize IR
light with wavelengths larger than 780𝑛𝑚 to attack AV’s cameras.
The Vulnerability. The AV is vulnerable to ICSL Attack for the
following reasons:

I) Human cannot see IR lights. Previous attacks on AV’s camera
are mainly based on the visible light, such as creating visible objects
[52] and toxic traffic signs [50, 70]. However, modern AVs require
the human driver to always be aware of the driving conditions (i.e.,
Defense Driving Strategy.) Therefore, although these attacks can
effectively attack the autonomous vehicle, they also can be detected
by the human driver. Different from these attacks, ICSL mainly

relies on the invisible light to attack the autonomous vehicle. By
carefully setting up the attacks in proper driving scenarios, the
human driver will not notice the IR light attacks.

II) The enterprise-level autonomous vehicle has to trust the data
gathered from cameras. Normally, to increase the environment per-
ception accuracy, the autonomous vehicle utilizes the data gathered
from multiple sensors to perform environment perception. Then,
during the sensor fusion process, an Extended Kalman Filter [3]
is implemented to dynamically assign different gains (i.e., Kalman
gains) to the sensors according to the current driving scenarios. For
example, the Radar sensor suffers high wireless interference in the
indoor parking lot, which will result in a relatively low Kalman gain.
On the other hand, LiDAR will be assigned with a high Kalman gain
to improve the environment perception accuracy. However, camera
data is critical for the AV (e.g., perform object detection and recog-
nition, localization and mapping, etc). It is important for an AV to
understand the shape, color and texture of an object, which cannot
be done by other sensors. As a result, the autonomous vehicle has
to trust the camera to perform autonomous driving.

III) The Invisible IR light is detected as the visible magenta color
light in the camera, which is difficult for an AV to verify if the
light is reflected by a real object or generated by an IR light source.
Moreover, since most people cannot see the IR light, the heavily
relied on ’human eyes defense strategy’ does not work properly. In
other words, the driver is unaware of the ICSL Attack until the AV
has already made unexpected harmful driving behaviors. To make
the situation even worse, although multiple approaches have been
proposed to defend against attacks on AV’s cameras [44, 46, 52, 70],
they are not designed to distinguish the IR lights from ambient
lights. In addition, these approaches require complex deep learning
algorithms and high computation resources, which is not suitable
for an autonomous vehicle with strict cost restrictions.

IV) During the SLAM process, it is possible for the invisible
IR source to be selected as the key points, which may vary the
localization and mapping results. Specifically, in order to guaran-
tee real-time processing, AVs mainly utilize ORB-SLAM-related
architectures to extract key points from each frame to perform lo-
calization and mapping [33, 51]. The key points extraction process
depends on the intensity weighted centroid of the patch in each
frame. However, since IR lights are bright and significantly different
from the background lights, the corresponding IR light pixels in
the camera may be selected as the key points. Therefore, when the
attacker moves the key points or turns off the IR lights, the SLAM
results in an AV may suffer high variance.

3.2 Threat Model
We assume the attacker knows the positions of the cameras on the
target autonomous vehicle. Since autonomous vehicle companies
normally publicly announce their autonomous driving solutions
and their hardware vendors for advertisement purposes, the at-
tacker can easily get the camera specifications by browsing the
internet. We also assume the attacker has the basic knowledge of IR
lights. As shown in Figure 5, to perform the ICSL Attack, multiple
IR light sources can either be deployed on attackers’ vehicles, flying
drones or on the road. In addition, we assume the attacker can set
up the attack in the night or find proper attack scenarios to reduce
the possibility of being detected by others. In addition, the attacker
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Figure 6: (a) Experiment setup: we implement the IR light LEDs in the traffic light to create fake invisible red signal. (b) Tesla
detects the fake red light signal; (c) The height of the traffic light will affect the attack result; (d) The fake traffic signal detected
distance vs. IR light intensity.

has an unlimited budget to purchase proper attack devices (i.e.,
drones and small IR LEDs). Specifically, the attacker can the create
following harmful results by performing the following attack:
• Alter Environment Perception Results. As shown in Figure
5 (a), the attacker can deploy the IR light source on the traffic light
to create fake traffic signals. Since the IR light is close to the red
color in the AV’s camera, the AV may make an unpredicted stop,
which will result in a traffic jam or potential accident. In Figure 5
(b), an attacker can also drive the vehicle close to the target AV and
uses IR light to alter AV’s environment perception results.
• Ruin the In-car User Experience. In Figure 5 (c), the attacker
can fly a drone with equipped IR light source to blind AV’s tar-
get cameras. By doing this, the AV will frequently show system
alert messages. Since human cannot see the IR light, the alert mes-
sages may be considered as system bugs and ruin the in-car user
experience.
• Introduce SLAM Errors. In Figure 5 (d), by deploying multiple
IR light sources on the road, the AV will select several detected IR
light sources in each frame as the key points for SLAM propose.
Then, by dynamically changing IR light sources’ positions and light
intensities, the AV will surfer relatively high SLAM errors.
4 ICSL ATTACKS ON TESLA
In this section, we mainly use ICSL Attack to 1) alter environment
perception results and 2) ruin the in-car user experience. We use
iPhone 12 pro to take photos in this paper. During the entire exper-
iment, human eyes cannot see IR lights.
4.1 Alter Environment Perception Results
In this experiment, we show how ICSLAttack can alter environment
perception results on Tesla Model 3. Then, we analyze the security
insight and discuss the related parameters that the attacker should
determine to improve the attack success rate.

4.1.1 Create Fake Invisible Traffic Light. We first create the fake
invisible traffic signal to alter the environment perception results
of Tesla, which is similar to the attack scenario in Figure 5 (a).
Experiment Setup. As shown in Figure 6 (a), since we cannot
make modifications to a real traffic light on the road, we embed IR
light LEDs on a smaller traffic light model (31.19×25.60×13.69𝑐𝑚) to
create fake invisible red traffic signals. We believe that it is sufficient
to prove the effectiveness of ICSL Attack. In practice, a real attacker
can implement IR LEDs with color close to red on a real traffic light
to conduct the attack.
Experiment Result. Figure 6 (b) shows the attack results when
the IR light intensities are 20𝑊 and 30𝑊 . Tesla detects the invisible

IR light and considers it as the red traffic signal. Moreover, when
the IR light intensity is 30𝑊 , Tesla also shows the line to make the
stop. On the contrary, the human driver cannot see the red traffic
signal generated by IR light in this scenario.
Analysis. Since Tesla does not validate the size of the traffic light,
even a smaller traffic light model is considered as a legitimate traffic
light. Moreover, the color of the IR light in the camera is close to the
red. As a result, Tesla detects the fake invisible IR light and considers
it as a legitimate red traffic signal. According to this experiment,
the attacker can either modify the existing legitimate traffic light
on the road to create the invisible red traffic signal or even build a
smaller invisible traffic light to change the driving behavior of an
AV without human driver notice. Since the human cannot see the
IR light, the AV will make unpredicted driving behavior before the
driver has a chance to take control.

In Figure 6 (c) and (d), we analyze the parameters that will af-
fect ICSL Attack, including the height of the traffic light, the light
intensity, and the distance to the AV. In Figure 6 (c), we show that
the height of the traffic light will affect the attack results. Since the
height of the traffic light is normally fixed, the fake traffic light with
a smaller height will be misclassified as an obstacle. According to
our experiment, to avoid attack failure, the attacker should make
sure that the height of the fake traffic light is at least larger than
2.45𝑚. As shown in Figure 6 (d), we show the maximum attack
distances under different IR light intensities. When the IR light
intensity is smaller than 15𝑊 , Tesla cannot detect the fake traffic
light regardless of the distance. As the IR light intensity increases,
the distances for Tesla to detect the fake traffic signal also increase.
When the light intensity reaches 30𝑊 , the maximum attack dis-
tance is around 10𝑚. Therefore, the attacker should at least use the
15𝑊 IR light and make sure the height of the traffic light is higher
than 2.45𝑚 in order to successfully attack Tesla.

4.1.2 Create Fake Objects. In this experiment, we assume the at-
tacker is driving in front of the AV and uses a drone with equipped
850𝑛𝑚 IR light sources to create fake objects, which is similar to
the attack scenario in Figure 5 (b).
Experiment Setup. In this section, we show how to utilizes ICSL
Attack to create fake objects. Since Tesla utilizes a triple forward
camera and fuses the perception results to increase the detection
accuracy, simply attacking a single camera will not alter the envi-
ronment perception results. Therefore, we first utilized a DJI Robot
Master S1 [13] equipped with a 850𝑛𝑚 IR light source to blind the
right main forward camera and the narrow forward camera, which
is shown in Figure 7 (a). Then, we utilized a drone equipped with six
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850𝑛𝑚 IR light LEDs (3W) to attack the left main forward camera,
which is shown in Figure 7 (c).
Experiment Result. Figure 7 (b) shows the ground truth when
Tesla is not under ICSL Attack. In this scenario, Tesla successfully
detects the front vehicle even if the vehicle is making a left turn
(only the left main forward camera and the narrow forward camera
can ’see’ the vehicle). However, as shown in Figure 7 (c), when
we utilize drones equipped with IR light LEDs to attack the left
main forward camera, the environment perception results of Tesla
shows that there are two vehicles (one sedan and one truck) and
a pedestrian is in front of the Tesla and the sedan is making a left
turn.
Analysis. In this experiment, since the narrow forward camera
and the right main forward camera are blinded by the IR light, only
the left main camera is used to detect the front objects. Therefore,
when this camera is under ICSL Attack, Tesla still has to believe
the information provided by the left camera. Moreover, during the
entire experiment, Tesla’s system alert is not triggered. This is
because we only blind two cameras while the left main camera can
still detect the front objects. In addition, Tesla tends to consider the
IR light sources equipped on the drone as the rear position lamps
from a legitimate vehicle. As a result, multiple fake objects are
detected by Tesla. During the experiment, since the human cannot
see the IR light, the ICSL Attack is not detected by the human driver.
However, we need to mention that in practice, it is possible for the
passengers or the drivers in other vehicles (have different filed of
views) to see the suspicious drone. In addition, the noise generated
by drones is around 65dB, which may be heard by the human driver.
Therefore, the attacker should carefully select the attack scenarios

(i.e., night scenario with limited vehicles on the road) and use a
better drone with lower noise to remain stealthy.

4.2 Ruin In-Car User Experience
In this experiment, we show how to create frequent system alerts
to ruin the In-Car user experience, which is similar to the attack
scenario in Figure 5 (c).
Experiment Setup. During this experiment, we assume the at-
tacker can either drive in front of the target AV or utilizes drones
to attack the AV. Specifically, as shown in Figure 8 (a), the attacker
utilizes IR light to blind the Triple Front Camera (two main forward
cameras and one narrow forward camera) of Tesla. In addition, the
attacker also can utilize drones to blind the side camera of Tesla.
For example, the left side camera is blinded in Figure 8 (c).
Experiment Result. As we can see from Figure 8 (b), Tesla gen-
erates system alerts to inform the drive that the front camera is
blocked or blinded. In this scenario, since the IR light is invisible, the
human driver will get confused and annoyed about system alerts.
In 8 (d), by attacking the left side forward camera, Tesla triggers
the system alert again. In this figure, we also show an example of
the view from the blinded camera. However, we need to mention
that the human driver cannot access the forward camera data while
the vehicle is moving. Therefore, although the camera detects the
invisible light, it is still difficult for the human driver to be aware
of the presence of the ICSL Attack.
Analysis. In this experiment, we found that the system alerts will
only be triggered when the entire triple front camera is blinded by
the IR light, which introduces a severe security risk. This experiment
also answers why the system alert is not triggeredwhen the attacker
is trying to create fake objects in the previous section 4.1.2. Since
Tesla fuses the data gathered from multiple cameras to understand
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Figure 10: SLAM trajectory: no ICSL Attack.

the driving scenario, these cameras are complement to each other.
Therefore, even if several cameras are interfered by IR lights, the
driving performance and in-car user experience are not affected.
5 ICSL ATTACKS ON SLAM SYSTEM
To show that it is possible to introduce SLAM errors to the AV, we
utilize an enterprise-level autonomous driving platform to analyze
the ICSL Attack. Similar to section 4, all the photos are taken by
iPhone 12 pro and human eyes cannot see any IR lights during the
experiment. In this section, we first introduce the experiment setup
and experiment results. Then, we analyze the security insights. At
last, we introduce a SLAM attack model to show how to manipulate
the SLAM trajectory.
5.1 Experiment Setup
We conduct the experiment in an indoor parking lot, which is shown
in Figure 9 (a). There are 74 850𝑛𝑚 IR light LEDs deployed in the
parking lot. Each corner is deployed 10 IR light LEDs and each floor
is deployed 11 IR light LEDs. These LEDs are blinking according
to their own schedules, which is shown in Figure 9 (b). As shown
in Figure 9 (c), we use an enterprise-level autonomous vehicles -
2018 Lincoln MKZ 2.0H (fully loaded) to evaluate ICSL Attack. The
front of the autonomous vehicle is equipped with one triple forward
camera, four Ultrasonic Sensors, one LiDAR, and one Mid-Range
Radar. The rear of the vehicle is equipped with four Ultrasonic
Sensors and one Mid-Range Radar. The roof of the autonomous
vehicle is equipped with three LiDARs. The AV utilizes the most
commonly used ORB-SLAM2 architecture [5, 51] to perform the
SLAM process. Due to the safety concern, the steering speed of the
vehicle is set to 4𝑚𝑝ℎ and the straight-line speed is set to 5𝑚𝑝ℎ.
The frame rate is set to 30𝑓 𝑝𝑠 . During the visual odometry (VO)
process, the autonomous vehicle extracts FAST key points [61]
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Driving Trajectory
SLAM Trajectory (ICSL Attack)

Figure 11: SLAM trajectory: under ICSL Attack.

and uses an ORB descriptor [62] to find the matched key points
every 6 frames. Then, according to the matched key points, the
motions (rotation and translation matrices) of the camera (AV) are
estimated. To improve the estimation accuracy, the AV will search
the local map in its dataset in order to find the accurate position
of the matched key points. At last, bundle adjustment (BA) will be
used to better estimate the location of the autonomous vehicle.

During the experiment, we have the access to the private park-
ing lot. However, in practice, the deployment process of IR light
LEDs will increase the possibilities of being detected by others.
Specifically, although the IR light cannot be perceived by human
eyes and the LEDs are small, it is still possible for the employees in
the parking lot (i.e., managers, sweepers etc.) to see the suspicious
behavior of the attacker or find small LED devices on the floor or on
the wall. Therefore, to remain stealthy, the attacker should carefully
select the locations of IR LEDs and conduct the deployment when
no one is in the parking lot.
5.2 Introduce SLAM Errors
Experiment Result. The experiment results are shown in Figure
10 and 11. When the autonomous vehicle is not under ICSL Attack,
the calculated SLAM trajectory is smooth and close to the actual
driving trajectory. In this scenario, even if the indoor parking lot
does not have the GPS signal, the AV can navigate itself and find
the entrance and exit. On the contrary, when the AV is under ICSL
Attack in Figure 11, the calculated SLAM trajectory cannot provide
any useful information. Moreover, as we can see from the red arrows
1, 2 ,3 ,4 and 6 in this figure, the VO process in SLAM is not working
properly and the trajectory is discontinuous while arrow 5 shows
that the vehicle is driving to the sky.
Analysis. In this section, we analyze why the calculated SLAM
trajectory under ICSL Attack cannot provide any useful information
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to navigate the AV. As shown in Figure 12, we plot the matching
results during the VO process in SLAM between two consecutive
frames. Since the IR light provides significantly different pixels
from the ambient light, the AV considers the IR light LEDs as the
key points and finds all the matches between two consecutive
frames. Moreover, since all the IR light LEDs are the same and the
background of the indoor parking lot cannot provide any useful
information to distinguish between different IR lights, it is highly
possible for the AV to mismatch those IR lights and gets the wrong
trajectory.

Specifically, to calculate the trajectory of the AV, we first define
the rotation matrix and translation matrix of the AV’s camera as
𝑅 and 𝑡 , respectively. Since the rotation and translation matrices
belong to the lie group SE(3), we have:

𝑆𝐸 (3) = {𝑇 =

[
𝑅 𝑡

0 1

]
∈ R4×4 |𝑅 ∈ 𝑆𝑂 (3), 𝑡 ∈ R3} (1)

Assume the homogeneous coordinate of the detected key point
𝑃 is 𝑃 = (𝑥,𝑦, 𝑧, 1)𝑇 and the corresponding projected point’s coor-
dinate on the camera is 𝑄 = (𝑢, 𝑣, 1)𝑇 . Then, we can represent the
relationship between the key point and the projected point as:

𝑠


𝑢

𝑣

1

 ≈ (𝐾𝑒𝜉
∧


𝑥

𝑦

𝑧

1

)1:3 (2)

where 𝑠 is the depth information of the detected key point and 𝐾 is
the camera matrix that will be provided in the specifications of the
camera. 𝜉∧ represents the skew-symmetric matrix of lie algebra for
the homogeneous matrix 𝑇 (𝑇 ∈ 𝑆𝐸 (3)) in equation 1. The left side
of this equation is a three dimensional vector while the right side
of this equation is a 4× 1 vector. Therefore, in order to calculate the
pose 𝜉 of AV’s camera, we only need to match the first three rows
of the right side to the left side in order to make the above equation
hold, which is denoted as (1 : 3). Due to the noise introduced
during the environment perception process, the following equation
is leveraged to minimize calculated pose error:

𝜉𝑜𝑝𝑡 = argmin
𝜉

1
2

𝑛∑
𝑖=1

| |𝑄𝑖 −
1
𝑠𝑖
𝐾𝑒𝜉

∧
𝑃𝑖 | |22 (3)

Therefore, we can find the optimized camera pose 𝜉 by a lineariza-
tion process. We first denote (𝑄𝑖 − 1

𝑠𝑖
𝐾𝑒𝜉

∧
𝑃𝑖 ) as 𝑒 (𝜉). Then, the

corresponding linearization form can be represented as 𝑒 (𝜉 +Δ𝜉) =
𝑒 (𝜉) + 𝐽Δ𝜉 , where 𝐽 is the Jacobian matrix of 𝑒 (𝜉) and can be cal-
culated by left multiply the perturbation 𝛿 : 𝐽 = 𝜕𝑒

𝜕𝛿𝜉
. Formally, the

camera matrix 𝐾 can be represented as:

𝐾 =


𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

 (4)

where 𝑓𝑥 and 𝑓𝑦 are the focal lengths while 𝑐𝑥 and 𝑐𝑦 are considered
as the principal point of the camera. Finally, the Jacobian matrix 𝐽
can be calculated as:

𝐽 = −

𝑓𝑥
𝑧 0 − 𝑓𝑥𝑥

𝑧2
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𝑓𝑦𝑥

𝑧

 (5)

As we can observe in this equation 5, since 𝑓𝑥 and 𝑓𝑦 are fixed ac-
cording to the camera matrix, the three-dimensional rotation matrix
𝑅 is affected by the first three columns while the three-dimensional
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Figure 12: An example of key pointmatching errors between
two consecutive frames.
translation matrix 𝑡 is affected by the column from four to six.
Therefore, when the ICSL Attack introduces mismatches between
two consecutive frames, the optimization direction is wrong, which
introduces a wrong 𝑅 and 𝑡 . As a result, the calculated trajectory is
significantly affected by the ICSL Attack.
SLAM attack model. According to the above analysis, in this sec-
tion, we show how to manipulate the SLAM trajectory. Specifically,
as shown in Figure 12, IR light LEDs introduce mismatches between
two consecutive frames. Therefore, by changing the blinking IR
light LEDs, the mismatches between two consecutive frames will
also be changed, which will result in the change of the correspond-
ing optimization directions 𝐽 . Formally, we define the mismatched
key point (with a different IR LED on) and its corresponding Ja-
cobian matrices are 𝑃 ′ = (𝑥 ′, 𝑦′, 𝑧′, 1)𝑇 and 𝐽 ′, respectively. Then,
in order to change the orientation of the AV from the original
𝑅 = (𝑟𝑥 , 𝑟𝑦, 𝑟𝑧)𝑇 to 𝑅′ = (𝑟 ′𝑥 , 𝑟 ′𝑦, 𝑟 ′𝑧)𝑇 , the attacker should make
sure that the first three columns of 𝐽 ′ satisfy:

𝑓𝑥𝑥
′+𝑓𝑦𝑦′
𝑧′2

≥ 𝑓𝑥𝑥+𝑓𝑦𝑦+𝑧2 (𝑟 ′𝑧−𝑟𝑧 )
𝑧2

,

𝑧′ ≥ 𝑧𝑓𝑥
𝑓𝑥−𝑧 (𝑟 ′𝑥−𝑟𝑥 ) ,

(6)

Similarly, to alter the translation matrix from 𝑡 = (𝑡𝑥 , 𝑡𝑦, 𝑡𝑧)𝑇
to 𝑡 ′ = (𝑡 ′𝑥 , 𝑡 ′𝑦, 𝑡 ′𝑧)𝑇 , the attacker should make sure the last three
columns of 𝐽 ′ satisfy:{

𝑓𝑥 𝑦
′+𝑓𝑦𝑦′2
𝑧′2

≥ 𝑓𝑥𝑥𝑦+𝑓𝑦𝑦2+𝑧2 (𝑡 ′𝑥−𝑡𝑥 )
𝑧2

,
𝑓𝑥 𝑦

′−𝑓𝑦𝑥 ′
𝑧′ ≥ 𝑓𝑥 𝑦−𝑓𝑦𝑥−𝑧 (𝑡 ′𝑧−𝑡𝑧 )

𝑧 ,
(7)

In practice, the maximum detection range of the forward camera
is around 80𝑚 and the angle of view is around 120◦ [24]. Assume
the speed of the target AV is 𝑣 and the frame rate of the camera is
𝑓𝑟 . Then, in order to change the optimization direction, the IR light
LEDs in the range 𝜋

3 (
80𝑣
𝑓𝑟

)2 that follows the above equations 6 and
7 should start to blink with the frequencies higher than 𝑓𝑟 .

6 POTENTIAL SOLUTION
In this section, we propose a lightweight lCSL Attack detectionmod-
ule to defend against ICSL Attack without requiring any hardware
modifications by utilizing a unique feature of IR light.

6.1 Unique Features of IR Light
Since the IR light shows a legitimate magenta color in AV’s cam-
era, the camera cannot distinguish if the magenta color is from a
legitimate visible light or from the IR light source, which makes it
challenging to defend against ICSL Attack. Intuitively, it is possible
to implement IR filters on the camera to defend against ICSL. Attack.
However, IR filters will introduce severe disadvantages, including i)
high implementation cost, and ii) filtering out useful information.
i) High implementation cost. Each AV uses at least 6 cameras
(3 front cameras, 2 side cameras, and 1 rear camera) to perform
autonomous driving. Since the price of each camera is around
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850𝑛𝑚 IR light reflected from an object. (a) and (c): the cam-
era detects the visiblemagenta color light reflected from the
wall. (b) and (d): the camera cannot detect reflected IR light.

$1000 while the price of the IR filter is around $100 to $150 [18,
26], the hardware cost will be increased by 10% to 15%. For the
AV companies, it is important to reduce the cost to win the ever-
increasing competition in the autonomous driving field.
ii) Filtering out useful information. The autonomous driving
systems rely on the IR light intensity, exposure value and tone curve
from the IR light to make the decision, especially under severe light-
ing scenarios (i.e., strong sunlight, high ambient light noise, etc.).
Moreover, the front and side cameras of the AV (i.e., Tesla Model
3 and Tesla Model S, etc.) are RCCB or RCCC cameras. Different
from traditional RGGB cameras, these cameras are designed for
computer vision and very sensitive to red and blue color. Since most
of the light sources (i.e., moonlight, vehicle light, halogen lamp, etc.)
also emit IR light energy. By detecting IR lights, RCCB or RCCC
cameras will significantly reduce the exposure time, increase the
camera dynamic range and the camera performance at night. How-
ever, filtering out the IR light will reduce the night performance of
RCCC or RCCB cameras.

In this work, instead of requiring hardware modifications, we
leverage a unique feature of IR light to defend against ICSL Attack.
Specifically, since the IR light absorption rate is higher than the
visible light [19, 55], when the IR light reaches a surface of an object,
most of its energy will be absorbed while the reflected energy will
be low. Therefore, it is difficult for the camera to detect the
IR light reflected from the surface of an object. To prove the
concept, we conduct experiments to compare the reflected visible
magenta color lights and 850𝑛𝑚 IR lights from walls with different
colors. As shown in Figure 14 (a) and (c), when visible magenta color
lights are transmitted to the wall, the camera can still detect the
reflected lights. In addition, the detected light color is also changing
according to the color of the wall. On the other hand, most of the
850𝑛𝑚 IR lights are absorbed by the wall. The camera cannot detect
the reflected IR lights from the wall and the wall shows its original
color. According to this unique feature, instead of directly detecting
the IR light source, the AV can detect ICSL Attack by detecting the
light reflected from the surface from other objects.

6.2 Overview of the Detection Module
According to the unique feature of IR light, we introduce one possi-
ble way to detect ICSL Attack. As shown in Figure 13, the proposed
detection module mainly consists of two parts: the Light Source
Detector & Filter module and the Reflection Detection module.

Light Source Detector & Filter. To defend against ICSL Attack,
the first step to is to recognize the light source. Since the wave-
length of IR light is close to 700𝑛𝑚, the color of the light shown in
the camera (magenta) is close to red. Therefore, according to the
frames captured by the camera, the detection module should also
validate the colors of the lights. If the detected colors are signifi-
cantly different from red, the corresponding light sources will be
ignored and considered as legitimate devices while the remaining
light sources will be transmitted to the reflection detection module
for further analysis.

Reflection Detection. The Reflection Detection module ana-
lyzes the remaining light sources that pass through the Light Source
Filter. Since the IR light reflected from other objects is weak and
cannot be detected by the commodity camera, the detection module
can utilize this feature to distinguish the IR light from visible light.
Specifically, the Reflection Detection module contains three parts
to analyze the reflected light:
•Material/Color Filter. Since some specificmaterials or objects with
specific colors have high IR light reflection factors, it is possible
for the camera to detect the IR light reflected from those objects
and misclassify those objects as light sources. For example, most of
the car paints are made of acrylic enamel or urethane [2], which
can reflect the IR light. In addition, since the bright silver color
can slightly reflect the IR light, the camera can detect the reflected
IR light at a close distance. Therefore, in this paper, the detection
module will ignore the red lights that are reflected from the body
of the vehicle or a bright color object.
• Surface Selection. Since different materials have different reflec-
tion factors [15], it is important that the detection module selects
the right surface of the object to analyze the reflected light. If the
reflected light is not detected, then the corresponding light source
should be considered as the IR light source.
• Color Analysis. Based on the color and intensity of the reflected
lights, the detection module should match reflected lights to the
corresponding light sources. Since the color of the surface will affect
the color of the reflected visible light, the detection module should
also recognize the reflected visible light even if the reflected light
color is not the same as the color of light source.

6.3 Experiment Setup
6.3.1 Light Source Detector & Filter. It is possible to recognize
light sources using filters and thresholds. However, different light
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Figure 15: The Light Source Detector & Filter module.

sources may have different configurations. For example, a traffic
light can be suspended or supported. In addition, the viewing angle
will also differ with the position of the car and the elevation of
the light. To get the best result, we applied a convolutional neural
network for traffic light recognition. The structure of the network
is shown in Figure 15.

We applied a two-dimensional convolution layer to the input,
which consists of 32 filters. The output featuremap was fed into a
maximumpooling layer to eliminate the differencemade by location
and rotation. Then, an activation layer with the ReLu function
was adopted to process each of the pooled featuremaps. After the
activation layer, a flatten layer reduced the dimension of the last
output for the following dense layer. The dense layer converts
the problem into a regular deeply connected neural network layer.
Then, a softmax activation layer gives the light source detection
output. At last, a color filter is implemented based on the color
threshold in order to filter out the light source that is not close to
the red color. During the experiment, we combined three datasets to
train the model. The first dataset is the Bosch Night dataset [7] and
the second is the Kitti dataset [28], which are famous and widely
used in autonomous vehicle experiments. The third dataset is the
dataset we self-recorded while driving the vehicle in a downtown
area and in an indoor parking lot.

6.3.2 Reflection Detection. The first step of reflection detection is
to filter out the potential materials or objects that may affect the
detection results. To do this, we leverage one of the most commonly
used deep learning-based object detection approaches–YOLOv5
[6, 60]. Similar to section 6.3.1, we use the Bosch Night dataset
[7], the Kitti dataset [28] and the self-recorded dataset to train the
detection model. In order to filter out the bright color objects, a
threshold-based color filter is also implemented.

Then, the key step of reflection detection is to choose the proper
reflection surface for detection. As stated before, we need to choose
a surface that reflects visible red light instead of IR light. The most
ideal surface would be the road since the concrete or pitch surface
absorbs the IR light but reflects the visible light. In the meantime,
we need to rule out the surface of other cars since their paint would
reflect IR light.

The next step is color analysis. Matching the reflected light to
the light source is challenging, since there could be multiple light
sources that pass the Light Source Detector & Filter module. To
overcome this challenge, we leverage the fact that although those
lights sources are transmitting red lights, the colors and light in-
tensities detected by the camera are different. This is because the
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Figure 16: The workflow of reflection detection.

detected colors and light intensities are affected by the position,
distance, and angle of view of the autonomous vehicle. Since the
camera is much more sensitive than the human eyes, the detected
light sources will show slightly different colors (i.e., crimson, ma-
genta and maroon, etc) with different light intensities. Therefore,
by matching the reflected light to the light source according to
the colors and intensities, we can find the remaining light sources,
which can be categorized as IR light sources.

The workflow of our reflection detection is shown in Figure 16.
We first apply the Material/Color Filter object recognition to rule
out the special materials and the objects with special colors. Then,
to improve the detection accuracy, we also rule out the objects
with smooth surfaces, such as road signs and mirrors. Then the IR
non-reflecting surfaces are picked. During the experiment, the road
surface is always the first choice, since the position, color, and area
are easy to identify.

On the IR non-reflecting surfaces, we apply a threshold to pick
out the area of reflection. The threshold is dynamically determined
based on the position of the light source. Since the light source is
already recognized, we can find out the reflection of light by using
color matching. Finally, if we get a solid reflection, we take it as the
legitimate light source. Otherwise, the detection module can send
alerts to the driver.

6.4 Experiment Results
As shown in Figure 17, we study the proposed defense strategy by
plotting Receiver Operating Characteristic (ROC) curves for the
Light Source Detector & Filter, the Material/Color Filter, and the
Combined Detection Module. We also calculate the corresponding
Area Under the ROC Curves (AUC) to analyze the performance of
the detection module. The block dot line in this figure serves as the
reference line to represent the performance of random guessing
(AUC = 0.5).

As we can observe from Figure 17, the Light Source Detector
& Filter performs well during the experiment (AUC = 0.99). This
module provides the reliable light source information for the de-
tection module to recognize the light sources and filter out the
light that is not close to the red color. The Material/Color Filter in
the Reflection Detection module also performs well (AUC = 0.99),
which can effectively recognize and filter out the special materials
and objects with special colors. The overall AUC of the proposed
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Figure 17: The Receiver Operating Characteristic (ROC)
curves for the detection module.

ICSL Attack detection module is 0.82. This is because we set several
thresholds to conduct the reflection surface selection. In real-world
scenarios, especially at night, the light conditions are complex and
hard to predict. In our experiment, although we utilize the road
surface to analyze the reflected light, the light interference from
the environment is severe, which reduces the accuracy of the final
results. It is possible to utilize advanced deep learning algorithms
to predict the potential reflection surface. However, this approach
typically requires high computation resources and does not support
real-time processing, which is not suitable for autonomous vehicles
[36, 39]. According to our experiment, we believe that 0.82 AUC is
sufficient so that the human driver to be aware of a potential attack.

7 DISCUSSIONS & ATTACK LIMITATIONS
In this section, we first discuss the attack generality and attack
stealthiness. Second, we will analyze the precision requirements for
the attacker to control the IR light source. Then, we will introduce
several important issues that may affect the attack results. At last,
we will discuss the trade-offs between different defense solutions.

7.1 Attack Generality
The proposed ICSL Attack mainly focuses on the camera embedded
in the autonomous vehicle. To alter the environment perception
results, the attacker can drive in front of the target AV or use a
drone equipped with IR light LEDs to attack the AV’s forward
camera. Moreover, the attacker can also deploy the IR light LEDs
on the road to attack the AV’s SLAM system. We believe that the
proposed attack has the following advantages, which introduce
severe security risks to the autonomous vehicle.
IR light is invisible. As mentioned in section 2.2, human eyes
cannot see the lights with wavelengths larger than 740𝑛𝑚. There-
fore, even if the current autonomous vehicle requires the human
driver to always be aware of the surroundings, it does not provide
any benefit against the ICSL Attack. On the contrary, the camera
detects the IR light and simply considers the IR light as visible light
to make driving decisions. The mismatches between human eyes
and the camera introduce security risks to the AV. For example, in
this paper, we have shown that the attacker can build an invisible
red traffic light to change the driving behaviors of AV. In practice,

we believe that more magenta objects (i.e., emergency light, fire
alarm light, etc.) may be spoofed by the ICSL Attack.
Does not require any specific designed hardware. Instead of
requiring specifically designed hardware, we mainly utilize the
off-the-shelf IR light LEDs to implement the ICSL Attack, which
is cheap (around $8/each) and can be purchased by anyone. As a
result, the attacker can easily and effectively attack the autonomous
vehicle with very little hardware or software knowledge.

7.2 Attack Stealthiness
The stealthiness of the proposed attack is guaranteed as long as
the human cannot see the IR light. However, as mentioned in pre-
vious sections, the implementation process of ICSL Attack may
increase the risks of exposing the identity of the attacker. Specifi-
cally, to create a fake traffic light, the attacker should implement
the IR light sources on the traffic signal before the autonomous
vehicle detects the signal. This suspicious process will significantly
increase the possibilities of being detected by pedestrians or police
officers. Therefore, it is important for the attacker to conduct the
implementation process during the night to mitigate the potential
risks of being seen by others. To introduce environment perception
error, the attacker should drive the vehicle in front of the target
AV and utilize drones equipped with IR lights to attack the target
AV. According to our experiments, although it is difficult for the
human driver to see or hear the drones during the night, it is still
possible for passengers or other vehicles to see or detect the suspi-
cious drone, which may increase the risk of attack failure. For the
SLAM attack, the attacker should implement multiple small IR light
sources in the parking lot, which may increase the risk of exposing
the identity of the attacker.

7.3 Precision Requirements
As introduced in section 4.1.2 and section 4.2, the attacker should
control the IR light source to aim the target cameras on the AVs.
However, in practice, the speed of the AV and the distance between
the target AV and the attacker will affect the attacker results. Specif-
ically, as the speed increases, the attack success rate will be reduced.
This is because the larger speed will introduce higher vibration
(i.e., engine vibration and high speed wind vibration) to the target
vehicle and the attacker’s vehicle. Since the size of the forward
camera for the autonomous vehicle (i.e., Tesla model 3) is limited
(i.e., around 20cmx20cm), the attacker should make sure that the
spot generated by the IR light source is in the correct area, which
requires the attacker to precisely control the direction of IR light
source. This requirement is relatively hard to achieve due to the
non-linear properties introduced by the vibration and vehicle mo-
tions. Fortunately, since the IR light is continuous and travels at
light speed, the attacker can conduct an extremely high number of
attacks in a very short time with no delay. Therefore, it is relatively
easy for the attacker to attack the autonomous vehicle.

When the distance between the attacker and the target vehicle
increases, the attacker has to use a high power IR light source to
attack the autonomous vehicle, which will significantly increase the
cost of the hardware. Moreover, the larger distance will introduce
larger IR light spot on the target vehicle, which will trigger the
system alerts. Therefore, the attacker should carefully control the
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Figure 18: The spectrum of Solar Radiation and the ICSL At-
tack
mounted aspheric lens on the IR light source according to the attack
scenarios.

The changing rate of the autonomous vehicle heading will also
affect the attack results. Formally, we represent the vehicle heading
as 𝜑 and the changing rate of the heading can be represented as ¤𝜑 .
Generally, the heading of the autonomous vehicle is determined
by the steering angle 𝛿 , the wheelbase length (the length of the
front axle to the center of the gravity 𝑙𝑓 plus the length of the rear
axle to the center of the gravity 𝑙𝑟 ) and the speed of the vehicle 𝑣
[30, 42, 72]. Then, according to the vehicle dynamics, the changing
rate of the vehicle heading can be represented as:

¤𝜑 =
𝑣

𝑙𝑓 + 𝑙𝑟
𝑡𝑎𝑛(𝛿) (8)

As shown in this equation, despite the impact of high speed, the
change of the steering angle will affect the heading of the AV. In
practice, to maintain proper lane position, the AV should control its
steering angle to adjust its lateral position. For example, the wheel-
base of Tesla model 3 is 2875𝑚𝑚 and the maximum steering angle is
around 36 degrees. Since the weight distribution of Tesla model 3 is
50/50, the maximum changing rate of the vehicle heading for Tesla
can be modeled as: ¤𝜑 = 0.289𝑣 . Therefore, the attacker should make
sure the minimal changing rate of the aiming direction should at
least satisfy the above equation. Assume the distances between the
attacker and the Tesla model 3 is between 5m to 15m, when the
speed of the Tesla model 3 is 40mph, the approximate changing
rate of the aiming direction should be in the range: 0.5◦/𝑠 − 1.8◦/𝑠 .

7.4 Attack Environments & Limitations
Impact of Solar Radiation. Due to the power limitation of the
IR light LEDs, in this paper, the ICSL Attack is mainly conducted
during the night to prove the concept. This is because the solar
radiation (i.e., electromagnetic energy from the sun) will interfere
with the low-power IR light. As we can see from Figure 18, although
most of the solar radiation is visible light, the lights from 700𝑛𝑚
to 940𝑛𝑚 (i.e., overlapped with the ICSL attack) still receives high
radiation power. As a result, although the camera can still detect
the IR light, the detection results are unpredictable. However, in
practice, we argue that the attacker can always purchase high-
power IR light sources to mitigate the impact of the solar radiation
interference.
Impact of GPS. To alter the SLAM localization and mapping re-
sults, we mainly attack the AV in an indoor parking lot. In this
scenario, since there is no GPS signal available, the AV has to rely
on the data gathered from the camera. In the outdoor scenario, the

autonomous vehicle may fuse the data gathered from GPS to correct
its calculated SLAM trajectory, which may reduce the impact of
ICSL Attack. However, since lots of autonomous vehicle compa-
nies mainly focus on the Automated Valet Parking in the indoor
parking lot scenario and the key part of their solution is to conduct
HD mapping based on SLAM [11, 12, 27], we believe that the ICSL
Attack introduces security risks to the autonomous vehicle.
Impact of Cameras. Since the proposed attack relies on the cam-
era to detect the IR light, it is important to analyze the types of
shutter and the color filter arrays in the camera.
• Types of shutter. There are two important types of shutters in
the camera: global shutter and rolling shutter. For the global shutter,
it exposes all the pixels in a frame at the same time while for the
rolling shutter, it exposes the pixels in a frame sequentially (line-
by-line). However, these two types of shutter will not affect the
attack results. For the environment perception attack, the attacker
continuously transmit the IR light to the camera. Therefore, as long
as the camera can detect the IR light, it will be affected by the attack.
For the SLAM attack, the IR light is flashing. However, the flashing
rate for the IR light is lower than 1Hz, which is much less than the
minimum shutter speed for cameras (30 Hz). Therefore, it is highly
possible for the camera to capture the IR light.
•Color filters arrays. Currently, the autonomous vehicles mainly
utilize RCCC (Red Clear Clear Clear), RCCB (Red Clear Clear Blue)
and RGGB (Red Green Green Blue) color filter arrays. Generally,
RCCC and RCCB color filter arrays are designed for computer vision
purposes. Although they cannot achieve high color accuracy, these
types of filters have high dynamic range and good performance
during the nighttime. Therefore, according to their advantages,
these cameras are normally utilized as the forward cameras and
side cameras in the AVs. To be more specific, for the RCCC filter, it
is highly sensitive to red light and IR light. Therefore, the RCCC
camera is vulnerable to ICSL attack. For the RCCB filter, it is sensi-
tive to red and blue color. This type of filters are the filters utilized
in the front and side cameras in the Tesla Model 3. As shown in
this paper, the camera with RCCB filter is also vulnerable to ICSL
Attack.

Different from RCCC and RCCB cameras, the RGGB color filter
array is designed for human eyes. It has the highest color accuracy.
Normally, the camera with RGGB color filter arrays is utilized as
the rear camera of the AV. This type of camera also can detect the
IR light. For ICSL Attack, since the RGGB camera has the highest
color accuracy, it can detect the fake traffic signal based on the
color of the red light. However, in practice, since the RGGB camera
has low dynamic range and poor performance in the nighttime, it
is not utilized as the forward camera and side camera. Therefore,
the ICSL Attack remains unaffected.

7.5 Trade-offs Between Defense Solutions
The proposed ICSL attack can alter the environment perception and
SLAM results of the AV. For the environment perception attack, it
can introduce fake objects or fake traffic signals, which may result
in potential car accidents. For the SLAM attack, it introduces high
localization error to the AV, which will affect the performance of
the AV or even result in navigation to a wrong destination.

In practice, to analyze the performance and the safety of the
AV, miles per disengagement (MPD) is one of the most important
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metrics [23], which measures the total miles that the AV can per-
form autonomous driving without detecting the system failure or
requiring the human driver to disengage the autonomous mode
due to the safe operation requirements. Normally, according to the
different AV companies, the MPD varies from 0.49 to 29,944.69 [25].
However, as shown in Figure 11, the autonomous vehicle requires
6 interventions in around 0.27 miles in a parking lot. The corre-
sponding MPD is around 0.045, which is much worse than the MPD
of the AV without ICSL attack and the performance of the AV is
hampered

As mentioned in section 6, to defend against the ICSL attack, the
easiest way is to implement IR filters in the camera. In this case,
since the IR light is filtered out, the AV is not vulnerable under ICSL
attack. This approach is robust under different driving scenarios
and does not require complex machine learning models.

However, this solution also introduces new challenges. First,
since most of the light sources (i.e., the Moonlight, vehicle light,
halogen lamp, etc.) emit IR light energy, the camera in the AV can
utilize these lights to improve the quality of the captured frame
at night [41]. By filtering out the IR light, the performance of the
camera in the AV will be hampered. Second, after implementing
the IR filter, the color information of the frames captured by the
camera will be inaccurate or wrong [31, 71], which will affect the
environment perception results.

To overcome the first challenge, the AV company can implement
LiDAR (around $5000 [21]) on the AV and develop algorithms or
architectures to fuse the environment perception results of LiDAR
and camera together. To overcome the second challenge, color
correction and calibration should be conducted, which requires
engineers to not only build complicated models but also manually
correct the color according to different scenarios and types of the
cameras. This process is time-consuming and will increase the cost
of the AV.

As introduced in section 6, another solution is to explore the
features of IR lights and utilize machine learning techniques to dis-
tinguish IR lights and visible lights. This solution is a software-based
approach and does not require additional hardware or redesign of
the camera, which reduces the cost of the AV. However, since the
driving scenarios of the autonomous vehicles are various, it requires
the AV company to collect a huge amount of data to train the model,
which is time-consuming. Moreover, different from the IR light fil-
ter solution, the performance of this software-based approach is
highly sensitive to different light conditions, object materials and
weather conditions. Therefore, the robustness of this approach is
not as high as the IR light filter solution.

8 RELATEDWORK
Attacks on Autonomous Vehicles. Extensive prior works have
been conducted to explore the security risks of Autonomous Vehicle
[32, 34, 47, 53, 58, 65–68, 75, 77]. In the field of sensor attack, by
utilizing advanced hardware, researchers have shown that the Ultra-
sonic Sensor is vulnerable to jamming, Denial of Service (DoS) and
the delay injection attack [37, 56]. For the LiDAR sensor, the one
of the most common attack methods are LiDAR spoofing attacks
[34, 58, 67]. The vulnerability of Mid-range Radar is also widely
studied by multiple researchers [48, 77]. Instead of requiring spe-
cially designed hardware, the attack on AV’s camera is relatively

easy for the attacker to implement, which introduces severe secu-
rity risks. For example, the attack can simply deploy toxic signs to
misleading the autonomous vehicle [50, 70]. One of the most recent
work Phantom Attack successfully changes the driving decisions of
AV by projecting a phantom (i.e., a fake image or traffic sign) on the
road by using a drone equipped with a projector [52]. According to
these researches, current autonomous driving system requires the
human driver to always ber aware of the driving conditions, which
helps the AV to defend against the potential attacks.

Different from their works, in this paper, we propose ICSL Attack,
which utilizes invisible IR light to alter the environment perception
results of AV. Since AV’s camera can detect the IR light, it considers
the invisible lights as real objects without the human driver’s notice.
As a result, the human driver defense strategy is not working, which
introduces severe security risks to current AV.
Potential Defense Strategies. According to the existing security
risks, lots of work has been proposed to secure AV and defend
against potential attacks [40, 43, 59, 69, 73]. For example, SAVIOR
mainly leverage the physical invariants to validate the data gath-
ered fromGPS/IMU sensors [59]. PyCRA utilizes the random probes
transmitted by the sensor and validate the received signal to detect
the potential attacks [69] while PGFUZZ provides a framework
to locate the bugs in robotic vehicle’s control software. In order
to defend against attacks on computer vision, the most common
solution is to utilize machine learning (ML) techniques to identify
the adversarial attacks [29, 49, 74]. The researcher can either utilize
adversarial training [63], modifying existing ML networks [45, 64]
or propose new models [52, 76] to defend against potential attacks.
For example, the author proposes a novel detection module includ-
ing context model, surface model and light model to validate the
frame captured by the camera [52]. However, these approaches
mainly focus on the visible light. Since IR light and visible magenta
light appear the same to the camera, tradition approaches cannot
work to defend against the ICSL Attack.

Different from their works, we leverage a unique feature of IR
light to defend against ICSL Attack. By analyzing the reflections
from objects, we can distinguish the IR light from visible light with
high accuracy.

9 CONCLUSION
In this paper, we propose the first work that explores the threat of
IR light to autonomous vehicles (AV) and introduce the I-Can-See-
the-Light Attack (ICSL Attack), which can effectively i) generate
invisible traffic lights, ii) create fake objects, iii) ruin the in-car
user experience, and iv) introduce SLAM errors to the autonomous
vehicle without human notice. To defend against the ICSL Attack,
we explore the features of IR light and introduce a novel lightweight
software-based detection module to secure the autonomous vehicle.
We also believe that it is easy for the attacker to implement the IR
light related attack, which requires the AV company to be aware of
the threat of the IR light.
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