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Abstract—To maximize Signal-to-Noise Ratio (SNR), it is
necessary to move beyond selecting beams from a codebook.
While the state-of-the-art approaches can significantly improve
SNR compared to codebook-based beam selection by exploiting
the globally-optimal beam, they incur significant beam-training
overhead, which limits the applicability to large-scale antenna
arrays and the scalability for multiple users. In this paper,
we propose FTP, a highly-scalable beam-training solution that
can find the globally-optimal beam with minimal beam-training
overhead. FTP works by estimating per-path direction along with
its complex gain and synthesizes the globally-optimal beam from
these parameters. Our design significantly reduces the search
space for finding such path parameters, which enables FTP
to scale to large-scale antenna arrays. We implemented and
evaluated FTP on a mmWave experimental platform with 32
antenna elements. Our results demonstrate that FTP achieves
optimal SNR performance comparable with the state-of-the-
art while reducing the beam-training overhead by 3 orders of
magnitude. Under simulated settings, we demonstrate that the
gain of FTP can be even more significant for larger antenna
arrays with up to 1024 elements.

Index Terms—mmWave, beamforming, overhead

I. INTRODUCTION

The availability of large bandwidth in mmWave frequency

bands (e.g., 30-300GHz) is promising to meet the increasing

demands for high data rates. This is particularly crucial in

today’s world where high data rate applications such as

virtual and augmented reality, high-definition video streaming,

and remote healthcare are becoming increasingly popular. To

support these cutting-edge applications, new communication

standards are also incorporating mmWave technologies into

IEEE 802.11 wireless LAN [1] and 5G networks [2].

However, the high path loss in mmWave frequency bands

poses significant challenges. In mmWave communications,

beamforming is required to compensate for such high path

loss. A transmitter (TX) needs to first align its beam with

the receiver (RX) through a beam-training process before it

can start data transmission. Although various beam-training

methods [1], [3]–[12] have been proposed, these approaches

cannot maximize the SNR because their beam selection is

limited to a pre-defined codebook and therefore cannot find the

globally-optimal beam corresponding to the channel. Such an

optimal beam amplifies transmitted signals along the directions

of the physical paths and ensures constructive interference at

the RX. Thus, to maximize SNR, it is necessary to move

§Both authors contributed equally to the paper

beyond selecting beams from a codebook. State-of-the-art

(ACO [13] and UbiG [14]) can significantly improve SNR

(∼2x [13]) compared to codebook-based beam selection by

exploiting the globally-optimal beam.

While ACO [13] and UbiG [14] are effective in finding the

globally-optimal beam, they incur significant beam-training
overhead, which limits the applicability of such ideas as we

move to large-scale antenna arrays and across multiple users.

The beam-training overhead consists of two parts: (1) probing
overhead (time needed by the TX to send beam probes and

collect feedback for decision-making) and (2) computational
overhead. The probing overhead of ACO scales linearly with

the antenna array size N (≈ 5N ), which becomes intractable

for large-scale antenna arrays. UbiG’s use of a genetic al-

gorithm [15] can take a long time to converge1, resulting

in significant computational overhead. Although customized

hardware can considerably speed up the convergence of a

genetic algorithm, it is not available on Commercial-Off-the-

Shelf (COTS) mmWave devices.

In this paper, we propose FTP, a highly-scalable beam-

training solution that can find the globally-optimal beam with

minimal beam-training overhead. FTP works by estimating

per-path direction along with its complex gain and synthesizes

the globally-optimal beam from these parameters. Our design

significantly reduces the search space for finding such path

parameters, which enables FTP to scale to large arrays.

For example, a path with an Angle of Departure (AoD) of θ
and a complex gain of aejφ results in an observed channel of

h = aejφg(θ), where g(θ) denotes the directional gain of the

transmit beam. Therefore, the observed channel is a function

of both the gain of the physical path and the directional gain

of the employed beam. To estimate individual components

θ and aejφ from the ensemble is non-trivial. A state-of-the-

art algorithm [14] searches through all possible combinations

of (aejφ,θ) to find the maximum match with the measured

channels, which results in significant computational overhead.

Our key insight is that it is possible to solve for θ directly

from the ensemble and aejφ becomes trivial to obtain once θ is

known. We observe that as the TX changes the transmit beams,

the gain of the underlying physical path aejφ remains the same

while the directional gain g(θ) changes as a function of θ.

Since g(·) is known to the TX, this means that we can estimate

the direction θ from the variation patterns of the observed

1Up to a few seconds on an Intel i7-7700 CPU.
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Fig. 1: Our experimental results show that FTP is 3 orders

of magnitude faster than UbiG on a 32-element antenna array.

Our simulation results show that FTP is 4 orders of magnitude

faster than ACO on a 1024-element antenna array.

channels. By solving for the direction first, we can significantly

reduce the beam-training overhead of finding the globally-

optimal beam. In Fig. 1, our experimental results show that

FTP is up to 3 orders of magnitude faster 2 than UbiG on

a 32-element antenna array (detailed in Sec. VI-E). Moreover,

based on the insights and data from experiments on the smaller

antenna array, we conduct simulations using a 1024-element

antenna array to further demonstrate that the gain of FTP
improves even further with larger antenna arrays. To realize

FTP, however, several challenges need to be overcome.

First, FTP must efficiently and accurately estimate path

directions from the channel variations. This step is crucial as

it has a direct influence on the estimation accuracy of the

complex gain for each path. By leveraging the sparsity of the

mmWave channel [14], [16]–[18], we can formulate our path

direction estimation as a compressive sensing (CS) problem.

However, standard CS techniques [19]–[21] can not be applied

here because the channel measurements across beam probes

are phase-incoherent due to the Carrier Frequency Offset

(CFO) on COTS mmWave devices [1], [2]. While a non-

coherent CS design [22] addressed the phase-incoherence, it

still has limitations to identify directions in multipath scenar-

ios. Our key observation is that we can distinguish paths

based on their Time of Flight (ToF) in the Channel Impulse

Response (CIR) and individually solve for their direction,

which enables us to break away from the limitations discussed

above. By divide-and-conquer, we restrict the number of paths

to 1 for each sub-problem and can thereby leverage the CS

technique to efficiently and accurately estimate individual path

direction.

Second, FTP must reliably distinguish paths in the CIR,

which in turn ensures accurate path direction estimation. Two

paths that have lengths within the distance resolution (inversely

proportional to the system bandwidth) can not be distinguished

in the CIR. Moreover, even the two paths are spaced more

2While the absolute computation time is hardware-specific, the relative
gain depends on the difference of algorithmic complexity and is hardware-
independent.

than the distance resolution, the observed channels can deviate

from their true values due to the interaction between them. To

understand this, the Nyquist sampling theorem [23] tells us

that the digital representation of the CIR is the superposition

of the two delayed and attenuated sinc functions centered at

their ToF being measured at points spaced by the sampling

interval. Therefore, two peaks that are farther away in the CIR

affect each other less as the ripple of the sinc function slowly

fades. To reliably distinguish paths in the CIR, we formulate it

as an L1-norm regularized least-squares optimization problem,

which is solved by convex optimization techniques [24],

[25]. This optimization step results in improved accuracy and

reliability of path direction identification.

Third, FTP addresses how to obtain coherent complex

gain for each path such that we can guarantee constructive

interference at the RX. Although channel measurements across

beam probes are phase-incoherent due to the CFO on COTS

mmWave devices [1], [2], we observe that the relative phases

for each path within the same beam probe are still coherent.

The reason is that the relative phases only depend on the dif-

ference between path lengths and they remain the same across

beam probes. Furthermore, to ensure constructive interference

at the RX, we only need the relative complex gains among the

paths instead of their absolute values. Therefore, we measure

the relative complex gains among paths in the same beam such

that they are phase-coherent.

We note that FTP is complementary to beam-tracking

solutions [26]–[29] that deal with link maintenance for block-

age and mobility events (detailed in Sec. II). For example,

mmReliable [28] can benefit from taking accurate initial input

from FTP during beam-training and maintain optimal beam-

tracking during data transmission.

We implemented and evaluated FTP on a mmWave ex-

perimental platform [30]. Our results demonstrate that FTP
achieves optimal SNR performance comparable with state-

of-the-art approaches [13], [14] while reducing the beam-
training overhead by 3 orders of magnitude. Under simulated

settings, we demonstrate that the gain of FTP can be even

more significant for larger arrays with up to 1024 elements.

The contributions of this paper are summarized as follows:

(1) To the best of our knowledge, FTP is a mmWave beam-

training approach that can find the globally-optimal beam with

minimal overhead.

(2) We present the design of FTP that significantly reduces

the search space for finding the globally-optimal beam.

(3) We implemented FTP on a mmWave experimental platform

with 32 antenna elements and extensively evaluated it under

realistic settings (Sec. VI). We demonstrate that FTP can scale

to large antenna arrays.

II. RELATED WORK

FTP is a beam-training solution that enables a TX to

efficiently align its beam with the RX in the beam-training

phase prior to data transmission. During data transmission,

beam-tracking techniques can be deployed to maintain the

communication link for blockage and mobility events.
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� mmWave beam-training. The IEEE 802.11ad standard [1]

deploys a hierarchical beam search and it can take up to

few seconds to find the correct beam. Recent compressive

sensing solutions [20], [21] and AgileLink [18] enable a TX

to align its beam with logarithmic number of measurements.

However, they either require phase-coherence across beam

probes [20], [21] or a customized phased array antenna [18]

that are not available on COTS mmWave radios. Different

from these approaches, FTP can work with COTS mmWave

radios and do not require phase-coherence across measure-

ments. Non-coherent compressive sensing desgins [7], [22],

[31] were proposed and shown possible to be implemented

on COTS mmWave radios. However, it still has limitations

to align beams in multipath scenarios whereas FTP can find

the optimal beam in such environments. Machine learning-

based approaches [4], [6] aimed to train a deep neural network

model to quickly select the best beam from a codebook.

However, these methods can not go beyond selecting beams

from a codebook whereas FTP can find the globally-optimal

beam corresponding to the channel. In another line of work,

researchers have considered using information from external

sensors to assist beam selection, such as light sensors [32],

cameras [9], MIMO WiFi radios [3], [10], and LiDAR [5].

Different from these methods, FTP identifies the optimal

beam using in-band mmWave signals only and does not

require extra sensors. When multiple APs and clients coexist,

BounceNet [12] proposed an interference-aware beam-training

algorithm that exploits spatial reuse to scale network through-

put. Our work is complementary to such technique and can

benefit from enabling more concurrent transmissions to further

scale the gain of FTP.

ACO [13] and UbiG [14] are the state-of-the-art that can

find the globally-optimal beam on COTS mmWave devices.

ACO aims to measure the channel for each antenna element

from the received power measurements and calculates the

optimal beam from the full channel. However, the probing
overhead for ACO scales linearly with antenna array size and

it becomes intractable for large-scale antenna arrays. UbiG
solves for parameters of each physical path through a genetic

algorithm and assembles the optimal beam from the estimated

parameters. However, UbiG’s algorithmic complexity incurs

significant computational overhead, which limits its deploya-

bility on COTS mmWave devices. In contrast, FTP can find

the globally-optimal beam while being orders of magnitude

faster than ACO and UbiG, which enables FTP to be applied

to large-scale antenna arrays and scale for multiple users.

� mmWave beam-tracking. mmChoir [26] proactively mit-

igated blockage by joint transmissions from multiple APs to

the client. MOCA [33] proactively identifies and adapts to

link impairments due to user mobility through estimating link

quality for selected beams prior to each data transmission. X-

Array [27] leverages a multi-array architecture to efficiently

find alternative arrays/beams when blockage occurs. Last,

mmReliable [28] achieves link maintenance by tracking trans-

lational and rotational motions of the client. Complementary to

these beam-tracking techniques that adpat beams during data

TX
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Fig. 2: The mmWave signal propagation from the TX to

the RX involves various elements, including transmit/receive

beams, steering vectors, and channel complex gains.

transmission, FTP is a beam-training solution that enables a

TX to efficiently find the globally-optimal beam during beam-

training phase.

� Hybrid beamforming. For Multiple-Input Multiple-Output

(MIMO) mmWave systems, many techniques have been pro-

posed [34]–[36] to jointly optimize signals at each phased

array antenna for digital beamforming. However, they require

multiple phased arrays whereas FTP focuses on analog beam-

forming systems with a single Radio Frequency (RF) chain.

Our work is complementary to hybrid beamforming and can

benefit from having multiple RF chains to align many optimal

beams for multiple users.

III. BACKGROUND ON MMWAVE CHANNEL

Obtaining mmWave channel information is crucial for de-

riving the optimal beam. Therefore, it is necessary to conduct

a thorough analysis of the channel.

(1) mmWave Communication. We first present a mmWave

communication model that enables us to analyze the re-

lationship between the transmit beam at the TX and the

received signal at the RX. Fig. 2 depicts the process of

mmWave communication, which involves a few distinct steps:

(i) TX Beamforming. The TX is equipped with a phased

array antenna consisting of N elements. It applies various

complex gains, including phase shifts and amplitudes, to each

antenna element to form a beam in the desired direction. The

combination of these complex gains is referred to as a beam.

(ii) Signal Propagation. The transmitted signals travel through

the wireless channel and may reflect off of an obstacle to reach

the RX. (iii) RX Receiving. The RX is also equipped with a

phased array antenna. A receive beam is applied to the antenna

to boost the received signal. The whole process is given by:

y = uHHvx+ uHn (1)

where v and u represent the transmit beam and receive beam,

respectively. y, x, and n are the received signal at the RX,

313Authorized licensed use limited to: Florida State University. Downloaded on May 04,2025 at 23:29:50 UTC from IEEE Xplore.  Restrictions apply. 



the transmitted signal from the TX, and the noise. H denotes

the mmWave channel. Based on Eqn. 1, the CIR is given by:

p = uHHv (2)

Our design objective is to maximize the signal strength by

optimizing v to the optimal beam. The received signal strength

can be expressed as |p|2. By applying the Cauchy-Schwarz

inequality [37], the optimal beam is given by:

v∗ = HHu/||HHu|| (3)

where division of the norm keeps the power constraint.

Thus, to obtain the optimal beam v∗, all we need to know

is uHH, which is the transmitting channel viewed by the TX.

(2) mmWave Transmitting Channel. To fully exploit the

potential of an optimal beam, we focus on the multipath

scenarios in practical mmWave communications. Specifically,

as shown in Fig. 2, the transmitting channel can be represented

by a set of elements along paths between the TX and RX:

uHH = uH
K∑

k=1

hkgr(ψ
az
k , ψel

k )gHt (θazk , θelk ) (4)

where K represents the number of paths. hk is the channel

complex gain along the k-th path. For the k-th path, the Angle

of Arrival (AoA) (including the azimuth and elevation angles)

is given by (ψaz
k , ψel

k ), while the Angle of Departure (AoD)

is given by (θazk , θelk ). gr(·) and gt(·) represent the steering

vector functions at the TX and RX, respectively.

We note that the RX uses a fixed beam u during TX beam

training, resulting in u and gr(ψ
az
k , ψel

k ) remaining constant

across CIRs. hk is also fixed for a specific path. Since the

product of uHhkgr(ψ
az
k , ψel

k ) is a constant complex value for

a specific path, we can simplify Eqn. 4 as follows:

uHH =

K∑

k=1

ake
jφkgHt (θazk , θelk ) (5)

where ake
jφk = uHhkgr(ψ

az
k , ψel

k ) represents the total com-

plex gain of the k-th path, which is the product of the receive

beam, the channel complex gain, and the RX steering vector

along that path.

Eqn. 1 and 5 reveal that the mmWave channel is a combi-

nation of various elements. Exploring these different elements

can lead to diverse approaches for obtaining channel informa-

tion, resulting in varying beam-training overhead.

IV. FTP: KEY DESIGN INSIGHT

In this section we present the key facet underpinning FTP’s

design. We begin by noting that prior research has approached

the problem of channel measurement in a variety of ways. We

systematically discuss some of these prior approaches before

discussing the key insight that FTP leverages.

Antenna Perspective: First, from the perspective of antenna,

the mmWave channel is an assembly of the distinct channels

of each antenna element. We can express this concept by

rewriting Eqn. 1:

y =

N∑

n=1

[0 · · · , (uHH)n, · · · 0][0 · · · ,vn, · · · 0]Tx+ uHn

(6)

where (uHH)n is the n-th element of transmitting channel
uHH, while vn is the complex gain of the n-th antenna

element. We note that both uHH and v in Eqn. 1 are complex

vectors with sizes 1×N and N × 1, respectively.

Eqn. 6 reveals that it is feasible to measure (uHH)n
using [0 · · · ,vn, · · · 0]T as the probing beam, as validated by

ACO [13]. As a result, to measure the channel corresponding

to each antenna element, this approach results in a probing
overhead that scales linearly with N (O(N)), leading to

significant probing overhead for large-scale antenna arrays.

Path Perspective: Second, an alternative approach relies on a

path-based approach. Eqn. 5 reveals that the mmWave channel

is a combination of each individual path’s channel, which in

turn is jointly determined by 4 unknowns (ak, φk, θazk , θelk ).

Since the four unknowns are considered to be tightly coupled,

UbiG [14] extracts them by solving the following optimization

problem:

{ak,φk,θ
az
k ,θelk }∗= argmin

{ak,φk,θaz
k ,θel

k }
||{(uHH)kvm− p(m,k)}Mm=1||2

(7)

where (uHH)k represents the transmitting channel along the

k-th path. vm denotes the m-th probing beam, and the number

of probing beam is M . p(m,k) is the measured CIR of the k-th

path from the m-th probing beam.

However, Eqn. 7 is a non-convex non-linear optimiza-

tion problem. UbiG solves it by using a genetic algorithm

with orthogonal matching pursuit. The large search space

for finding the global optimum of this problem leads to a

significant computational overhead, which can take a long

time to converge (up to a few seconds on an Intel i7-7700

CPU).

� FTP’s Key Insight. We observe that among the four un-

knowns, (θazk , θelk ) can be solved separately from ck = ake
jφk .

To better understand our observation, we can rewrite Eqn. 7

as follows:

(θazk , θelk )∗ = argmin
(θaz

k ,θel
k )

||{ckgHt (θazk , θelk )vm − p(m,k)}Mm=1||2

= argmin
(θaz

k ,θel
k )

||{gHt (θazk , θelk )vm − p(m,k)}Mm=1||2

(8)

Since ake
jφk is a constant value for k-th path and does not

depend on (θazk , θelk ), it can be considered as a scaling factor

in Eqn. 8 and be ignored during the optimization process

without affecting the final results. Therefore, we can simplify

the optimization problem by removing this constant factor

from the objective function and focus solely on finding the

optimal values of (θazk , θelk ). Moreover, once (θazk , θelk ) are

determined, ake
jφk can be trivially derived. This approach

314Authorized licensed use limited to: Florida State University. Downloaded on May 04,2025 at 23:29:50 UTC from IEEE Xplore.  Restrictions apply. 



significantly reduces the search space for the global optimum

compared to Eqn. 7.

V. FTP SYSTEM DESIGN

Based on FTP’s key insight, the optimal beam can be ob-

tained in two steps: (1) determining the path directions and (2)

deriving the optimal beam. To accomplish this, FTP employs

the compressive sensing (CS) technique to estimate the path

directions. However, this is challenging due to the limitations

of existing CS solutions on COTS mmWave devices, which

can only identify the direction of the dominant path but not

the directions of multipath. In this section, we first describe

how to perform CS-based spatial probing and detail how we

can leverage the CS technique to identify the directions of

multipath. Finally, we explain how to derive the optimal beam

based on the identified path directions.

A. Perform Spatial Probing

FTP utilizes CS-based spatial probing to measure the

mmWave channel. The basic idea is that the TX utilizes

pseudorandom beams to send preamble signals in different

directions. Preamble signals are pre-defined signals that are

known to both TX and RX, and they enable the CIR estimation

with high accuracy. The reason why pseudorandom beams are

utilized is two-fold: (1) they can sample the spatial channel

effectively since they are uncorrelated to each other. (2) Such

beams do not require specialized hardware to generate and

only require coarse phase and amplitude control for each

antenna element. This makes it feasible to be implemented

on COTS mmWave devices with low-cost hardware [7], [38].

The m-th probing beam is set as:

vm = [1, ejθ
m
1 , ejθ

m
2 , ..., ejθ

m
N−1 ] (9)

where [θm1 , θm2 , . . . , θmN−1] represent the phase shifts, which

are independent and identically distributed random variables

from a uniform distribution on {0, π/2, π, 3π/2}. Fig. 3a

shows an example of the generated probing beams.

� Probing Overhead. By utilizing CS-based spatial probing,

the probing overhead of FTP is bounded by O(K logN),
which scales logarithmically with the number of antenna

elements (N ) and linearly with the number of paths (K). Since

the mmWave channel is sparse, typically K ≤ 3 [14], [16]–

[18], this means that FTP can easily scale to large antenna

arrays.

� Feedback Overhead. After the RX receives the probing

beams, it calculates the correlation value between the received

signal and the transmitted preamble. This correlation value is a

measure of the CIR, where paths will show as peaks, as shown

in Fig. 3b. The RX then sends the correlation peaks back to the

TX as feedback. Current standards like IEEE 802.11ad have

feedback mechanisms built into their beam-training protocols.

FTP can collect the correlation peaks of the K logN beams

by piggybacking them on one feedback packet, which takes

less than 1 μs in IEEE 802.11ad.

B. Determine Path Directions

FTP first distinguishes paths based on their ToF in the

CIR. Then, it individually applies the CS technique to each

path to estimate the direction. This allows FTP to overcome

the limitations of existing CS solutions on COTS mmWave

devices in multipath scenarios.

Upon receiving the feedback from the RX, the TX needs to

map the correlation peaks to each path based on their ToF,

as shown in Fig. 3c. We first sort the peaks according to

their ToF, and then group the peaks that belong to the same

path. Specifically, for two peaks to be mapped to the same

path, we define a threshold for the maximum time difference

between them. Peaks that have a time difference greater than

the threshold are mapped to different paths. Through this

process, we can obtain the CIR samples for each path.

Once the CIR samples for each path are obtained, we

individually apply the CS algorithm to each path to estimate

its direction. Without loss of generosity, let’s assume the TX is

equipped with an Uniform Rectangular Array (URA). The TX

steering vector is a known function that can be derived from

the antenna array geometry. For the antenna element in the

r-th row and c-th column, its contribution to the TX steering

vector is a 2D sinusoid given by:

gHt (θazk , θelk ) = {e
−2πd[cos(θaz

k )sin(θelk )r+sin(θaz
k )sin(θelk )c]

λ }R,C
r=1,c=1

(10)

where d and λ represent the antenna spacing and the wave-

length of the central frequency, respectively. R and C are

the number of antenna elements in each row and column,

respectively, and N = R× C.

We leverage the CS algorithm to solve the optimization

problem in Eqn. 8. The direction of the k-th path can be

estimated by maximizing the following cost function:

argmax
(θaz

k ,θel
k )

〈 {|gHt (θazk , θelk )vm|}Mm=1

||{gHt (θazk , θelk )vm}Mm=1||
,
{|p(m,k)|}Mm=1

||{p(m,k)}Mm=1||
〉 (11)

where 〈·〉 is the inner product operation. vm represents the

m-th probing beam, and M = K logN denotes the total

number of probes. p(m,k) is the correlation peak of the k-th

path obtained from the m-th probing beam.

It is noteworthy that FTP does not require phase-coherence

across probes throughout the process of estimating the path

directions as it only uses the magnitude part of the correlation

peaks, i.e., |p(m,k)|. This makes FTP widely applicable to

COTS mmWave devices.

� Extend FTP to mmWave 5G. The key challenge of

extending FTP to mmWave 5G lies in the reduced ability of

distinguishing between different paths. Compared to the IEEE

802.11ad [1] that employs almost 2 GHz of RF bandwidth,

mmWave 5G occupies significantly less RF bandwidth (up to

400 MHz [2]), resulting in reduced distance resolution. Thus,

when the difference between the path lengths is less than 0.75

m, the correlation peaks in the time domain will overlap.

Fig. 3b illustrates the problem of overlapping correlation

values from different paths. If FTP were to rely solely on the

315Authorized licensed use limited to: Florida State University. Downloaded on May 04,2025 at 23:29:50 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3: FTP’s system overview. (a) First, CS-based spatial probing is utilized to sample the multipath channel. (b) Paths are

detected as peaks in the CIR. Even when they overlap, we can distinguish them through an optimization process. (c) Path

directions are estimated by individually performing CS on each path in the CIR. (d) Once directions are obtained, we compute

the relative complex gains among paths from a particular beam that covers all paths. Then, FTP can construct the optimal

beam from the estimated parameters.

method mentioned previously, it would be unable to accurately

distinguish the direction of each path.

To address this challenge, we formulate it as an optimization

problem and solve it by convex optimization. Based on the

Nyquist sampling theorem [23], for a band-limited system,

the time-domain signals can be perfectly reconstructed through

sinc interpolation. Thus, the digital representation of the time-

domain channel is the superposition of individual delayed and

attenuated sinc centered at its ToF τk being sampled at points

spaced by the sampling interval, which is given by:

h[n] =

K∑

k=1

cksinc(B(nT − τk)) (12)

where ck, B, T, and τk denote the complex gain, the system

bandwidth, the sampling interval, and the ToF for k-th path.

Based on Eqn. 12, to recover (ck, τk) from paths that overlap

in the CIR, we can solve a matrix inverse problem by fitting

sinc functions over the measured CIR. However, this results in

an under-determined system of equations with infinitely many

solutions. To overcome this, we leverage the sparsity of the

mmWave channel and obtain the unique solution by solving

the following L1-norm regularized least-squares optimization

problem:

x∗ = argmin
x

||Dx− h||22 + λ||x||1 (13)

where the matrix D consists of sinc functions centered at all

ToF within the search range and the non-zero entries of x give

(ck, τk) for each path. Eqn. 13 can be solved efficiently by

convex optimization techniques [24], [25].

C. Derive The Optimal Beam

After obtaining the path directions, FTP computes the

complex gains ake
jφk of each paths and then derives the

optimal beam v∗.

However, the complex gains of each path are not phase-

coherent across different CIRs. To address this issue, FTP
leverages the phase-coherence within the same CIR to compute

the relative complex gains between paths. Therefore, it is

necessary for FTP to select a CIR that captures all paths.

Fortunately, due to the sparsity of mmWave channels, finding

such a CIR is often practical in real-world scenarios. We also

consider the worst-case scenario where there is no CIR that

can capture all paths. In such case, FTP amplifies the RF

energy in the identified path directions and sends an additional

probing beam specifically to capture the CIR from these paths.

This guarantees FTP to have a CIR that captures all paths.

Furthermore, this approach only requires sending an additional

probing beam, resulting in negligible extra probing overhead.

Apart from the phase-incoherence issue, the CFO within a

CIR needs to be removed as it introduces phase distortions.

Fortunately, CFO removal is a standard operation done at the

RX, which involves estimating the CFO from the preamble and

applying phase shifts to the samples in the CIR. Therefore, the

CIRs reported by the RX already have the CFO compensated.

Finally, the complex gain along k-th path is given by:

ake
jφk =

p(z,k)

gHt ((θazk , θelk )∗)vz
(14)

where vz denotes the z-th probing beam that provides the

selected CIR, and p(z,k) denotes the selected CIR of the k-th

path. Upon obtaining the complex gains, deriving the optimal

beam becomes straightforward. Based on Eqn. 3 and 5, the

optimal beam can be expressed as follows:

v∗ =

K∑

k=1

(ake
jφk)Hgt((θ

az
k , θelk )∗) (15)
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Fig. 4: Implementation

VI. EVALUATION

In this section, we provide a detailed description of our

implementation, experimental setup, and performance evalua-

tion. In addition, to prove the efficacy of our proposed beam-

training approach, its results are compared with those from

state-of-the-art techniques.

A. Implementation

To conduct a comprehensive evaluation, we implement FTP,

802.11ad [1], ACO, and UbiG.

� FTP. To demonstrate the feasibility of FTP in practical

scenarios, we implement it on the M-Cube platform [30],

which utilizes a COTS phased array antenna from Airfide

Inc [38], as shown in Fig. 4.

(1) Phased Array. FTP is equipped with a COTS phased

array antenna with 32 steerable antenna elements, as shown

in Fig. 4a. Each antenna element is controlled by a 2-bit phase-

shifter, where four possible phase-shift values can be applied:

{0, π/2, π, 3π/2}, and a one-bit amplitude control, i.e., an

element can either be on or off.

(2) 60 GHz Frequency. The phased array antenna used by

FTP operates at 60 GHz for mmWave communications. To

generate the necessary signals, the baseband signals from the

baseband processor unit are first up-converted to 15 GHz

intermediate frequency (IF) signals by an up-converter circuit

board, as shown in Fig. 4b. The IF signals are then up-

converted to 60 GHz by the antenna module.

(3) Baseband Processing. The M-Cube platform provides

seamless integration with both USRP and MATLAB, enabling

us to easily process baseband signals. Specifically, we use a

USRP X310 radio with UBX-160 as our baseband processor

unit, as shown in Fig. 4c, and perform signal processing using

MATLAB. Due to the analog bandwidth limitation of the

UBX-160 daughterboard, the bandwidth in our experiments

is capped at 160 MHz.

(4) Beam Control. The phased array antenna is controlled

in real-time for beam-switching by an FPGA, which sends

beam-switching commands at specified timestamps as shown

in Fig. 4d. To ensure accurate beam-switching, the control

commands and the IF data signals are synchronized in time

using the Automatic Transmit/Receive (ATR) function sup-

ported by the USRP. Moreover, customized beam patterns can

Fig. 5: The beam-training procedure specified by the IEEE

802.11ad standard.

be loaded into the device’s internal memory via an Ethernet

connection to modify the beam patterns.

� IEEE 802.11ad. We also implement the IEEE 802.11ad on

the M-Cube platform as a baseline beam-training approach,

which is widely used for 60 GHz WLAN. The codebook we

use is pre-configured by the device vendor [38] and contains

128 beams. This codebook size is in compliance with the IEEE

802.11ad standard [27]. To determine the optimal beam for the

baseline, we probe through all available beams.

� ACO. We also implement ACO on the M-Cube platform

as the state-of-the-art beam-training approach, which can find

the globally-optimal beam corresponding to the channel and

maximizes the SNR. We select ACO as the benchmark for

optimal SNR performance among state-of-the-art approaches.

� UbiG. We also include UbiG, another state-of-the-art beam-

training approach, in our experiments to compare the FTP’s

beam-training overhead with that of UbiG.

B. Experiment Setup

� PHY & MAC settings. We conduct experiments under

different PHY and MAC settings of IEEE 802.11ad. It is

worth noting that we do not require any hardware changes to

the PHY layer or any modifications to the MAC layer, which

demonstrates the potential integration of FTP with the existing

standards.

(1) PHY Layer. We follow the PHY parameters specified in

the IEEE 802.11ad standard to evaluate SNR and throughput.

Our modulation coding scheme (MCS) range from 1 to 12,

utilizing various types of modulation (BPSK, QPSK, and

16QAM), with each signal shifted by π/2 to avoid zero

crossings in the I/Q domain. We employ low-density parity

check (LDPC) codes for signal encoding, with code rates of

1/2, 5/8, 3/4, and 13/16 used depending on the data rate. Given
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the 160 MHz bandwidth in our implementation, the achievable

throughput can be up to 420 Mbps.

(2) MAC Layer. We adopt the IEEE 802.11ad MAC protocol

to evaluate the beam-training overhead of FTP in terms of

time. Specifically, the channel access is divided into periodic

beacon intervals (BI), which last for 100 ms and consist of

beacon header intervals (BHI) and data transmission intervals

(DTI), as shown in Fig. 5. We perform FTP only during

the BHI phase, which is divided into a beacon transmission

interval (BTI) and up to 8 association beamforming training

(A-BFT) slots. While beam refinement phase (BRP) frames

can be used during the DTI phase to refine beam performance,

we do not utilize them due to their limited deployment in

COTS mmWave devices [7]. To demonstrate the baseline per-

formance, we assume no collisions during the beam-training.

However, FTP has a significantly lower overhead compared

to state-of-the-art methods, which can lead to even better

performance in the presence of collisions.

� Experimental Environment. We conducted our experi-

ments in an indoor office environment measuring 24 × 13
meters, which contains a variety of reflective objects such

as metal cabinets, whiteboards, and concrete walls. The TX

and RX were randomly placed at various locations in the

office to cover both line-of-sight (LOS) and non-line-of-

sight (NLOS) scenarios, which are typical for IEEE 802.11ad

communications. Fig. 4e shows an example of placing the TX

and RX in our experiments. At each location, the RX was

fixed to receive with a fixed RX beam, while the TX iterated

through different beam-training methods.

C. LOS Performance

In this section, we investigate the SNR and throughput

performance of the three beam-training approaches with the

same IEEE 802.11ad PHY settings in LOS scenarios. Since

the TX uses an antenna array with 32-steerable elements, the

number of probes required for FTP and ACO are 15 (K logN )

and 156 (5N − 4), respectively. The 802.11ad, as the baseline

approach, scans through the available 128 beams and selects

the best performing one.

The resulting SNR performance is displayed in Fig.6a. The

median SNR for FTP, ACO, and the baseline are 21.41, 21.42,

and 17.65 dB, respectively. While FTP’s performance closely

follows ACO, it requires significantly fewer probes. In contrast,

the baseline has sub-optimal performance with almost 4 dB

lower median SNR than FTP and ACO.

These results highlight the importance of generating con-

structive multi-beams in indoor environments where many

reflectors, such as metal cabinets, whiteboards, and concrete

walls, create strong alternative paths in addition to the LOS. To

achieve optimal performance, it is necessary to synthesize the

globally-optimal beam from per-path direction and complex

gain parameters. FTP estimates these parameters and adapts its

beams optimally to the channel, whereas the baseline approach

can only select one of the beams from the predefined codebook

and cannot fully leverage the opportunities provided by such

multipath.

Moving on to the throughput performance shown in Fig. 6b,

although all three beam-training approaches achieve similar

median throughput of around 400 Mbps in LOS scenarios,

FTP and ACO can attain maximum throughput performance

twice as often as the baseline (80% versus 40%) due to their

ability to consistently achieve maximum SNR.

D. NLOS Performance

In this section, using the same IEEE 802.11ad PHY settings,

we investigate the SNR and throughput performance of FTP,

ACO, and the baseline in NLOS scenarios. Again, the TX

scans 15, 156, and 128 probes for FTP, ACO, and the baseline,

respectively. The resultant SNR performance is shown in

Fig. 6c. The median SNR for FTP, ACO, and the baseline are

13.58, 14.27, and 9.58 dB, respectively. FTP’s performance

still closely follows ACO in NLOS scenarios with a median

SNR loss of less than 1 dB. As expected, the baseline has

sub-optimal performance with 4 dB lower median SNR than

FTP. In NLOS scenarios, the transmitted signals can reach the

receiver through a path by either reflecting off of a reflector

or penetrating through an obstacle. Since the received signals

are weaker in this case compared to LOS scenarios, it’s even

more important to leverage the multipath propagations and

construct the corresponding multi-beam to maximize the SNR.

The experiment results verify that FTP can accurately estimate

per-path direction and relative complex gains among paths

in NLOS settings and achieve optimal SNR performance.

Next, Fig. 6d shows the throughput performance. The median

throughput for FTP, ACO, and the baseline are 268.80, 283.62,

and 199.50 Mbps, respectively. FTP has a 1.35x gain in

median throughput over the baseline and closely follows the

optimal performance.

E. Beam-training Overhead

In this section, we investigate the beam-training overhead of

FTP, ACO, and UbiG in both single-user (SU) and multi-user

(MU) scenarios. The beam-training overhead includes both

probing overhead and computational overhead. We calculate

the probing latency based on the number of probes required by

each approach, following the MAC protocol of IEEE 802.11ad.

We conservatively assume zero collisions to demonstrate basic

performance, but note that FTP is expected to outperform ACO
even in the presence of collisions due to its lower number of

required probes. We measure the runtime of each approach

on an Intel i7-7700 CPU to evaluate their computational

overhead. Our comparison of performance is not affected by

the experimental platform, as the relative gain in computation

time is hardware-independent and depends on algorithmic

complexity. Finally, we use insights and data from experiments

with a 32-element antenna array to conduct simulations with

larger antenna arrays, demonstrating the improved gain of

FTP.

In Fig. 7a, we present the probing overhead results for

SU scenarios with various antenna array sizes. The probing
overhead scales logarithmically and linearly for FTP and ACO
while UbiG requires a fixed number of probes irrespective
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Fig. 6: FTP’s SNR and throughput performance closely follow the optimal in both LOS and NLOS scenarios.
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Fig. 7: FTP outperforms state-of-the-arts by orders of magnitude in overall beam-training overhead. (a) The probing overhead
scales logarithmically and linearly with the antenna array size N for FTP and ACO while UbiG requires a fixed number of

probes. (b) UbiG’s algorithmic complexity is considerably higher than FTP and ACO, resulting in significant computational
overhead. (c) FTP is at least 3 orders of magnitude faster than ACO and UbiG in overall beam-training overhead for SU. (d)

With 8 clients, FTP is still 2 orders of magnitude faster than ACO and UbiG in overall beam-training overhead.

of the antenna array size N . For ACO, such high probing
overhead prevents it from scaling to large-scale antenna arrays.

Moving on to Fig. 7b, we show the results of the com-
putational overhead analysis for SU scenarios with various

antenna array sizes. Both FTP and ACO demonstrate low

computational overhead as the array size increases due to

their low algorithmic complexity. In contrast, UbiG’s use of

a genetic algorithm results in high algorithmic complexity

and significant computational overhead, which prevents it to

be even deployed on COTS mmWave devices with limited

computing resources.

Fig. 7c shows the overall beam-training overhead results for

SU with different antenna array sizes. As shown in the figure,

with increasing antenna array size, FTP maintains low probing
overhead and computational overhead, resulting in significant

gains in overall beam-training overhead compared to ACO
and UbiG. Specifically, for the 32-element antenna array, FTP
outperforms ACO and UbiG by up to 3 orders of magnitude.

When the antenna array size increases to 1024, the gain of FTP
increases to 4 orders of magnitude. This demonstrate that FTP
is a highly-scalable beam-training solution that can find the

globally-optimal beam with minimal beam-training overhead.

In Fig. 7d, we present the beam-training overhead results

for 8 clients with various antenna array sizes. As the number of

clients increases, FTP requires more than one beacon interval

to train all clients with larger antenna arrays, resulting in a

significant increase in the beam-training overhead. Despite

this, FTP still outperforms ACO and UbiG by two orders of

magnitude for a 1024-element antenna array. Moreover, for

larger antenna arrays, the training time required for one client

with ACO and UbiG is longer than training 8 clients with FTP,

which shows that FTP can handle large-scale antenna arrays

and multi-user scenarios simultaneously.

VII. CONCLUSION

In this paper, we presented FTP, a highly-scalable approach

for efficient and accurate beam-training in mmWave com-

munications. FTP can find the globally-optimal beam with

minimal beam-training overhead by efficiently estimating per-

path direction along with its complex gain. We addressed

several challenges, including efficient and accurate path di-

rection estimation, reliable path separation in the CIR, and

coherent complex gain for each path. We demonstrated the

effectiveness of FTP on a mmWave experimental platform

with 32 antenna elements and showed that FTP achieves

optimal SNR performance comparable with state-of-the-art

while reducing the beam-training overhead by 3 orders of

magnitude. Furthermore, we showed that the gain of FTP can

be even more significant for larger antenna arrays with up to

1024 elements. In summary, FTP can efficiently and accurately

find the globally-optimal beam, making it feasible to maximize

SNR in real-world mmWave communications.
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