
Lecture 7-9: Intruding Address Space
(How to Make Mods for Games)

Xin Liu

Florida State University
xliu15j@fsu.edu

CIS 5370 Computer Security
https://xinliulab.github.io/cis5370.html

mailto:xliu15@fsu.edu
https://xinliulab.github.io/cis5370.html

Recap

Background:
• Linux builds the entire application program world from an initial

process (state machine).
• Through fork, execve, and exit, we can create many child

processes and execute them concurrently.

Recap Address Space Intruding Takeaways 1 / 63

Question 3 in HW2
Objective: Understand how buffering works in the address space.
#include <stdio.h>
#include <unistd.h>
int main() {

for (int i = 0; i < 2; i++) {
fork();
printf("Hello\n");

}
}

Execution: Run the above program using the following commands:
1 gcc hello.c

2 ./a.out

3 ./a.out | cat

Task:
1 Explain why the outputs of the two commands differ.
2 Your explanation must include:

• The exact outputs of both commands.
• A detailed analysis of the buffering mechanism and how it affects output.
• Screenshots of debugging using tools such as objdump or gdb.

Recap Address Space Intruding Takeaways 2 / 63

Understanding fork()

Behavior Analysis:
• Running ./a.out directly produces a different number of lines

compared to ./a.out | wc -l.
• Following the principle that ”the machine is always right”, we analyze

the cause:
• Hypothesis: libc buffering effect.
• Verification: Compare system call sequences using strace.

Buffering Control:
• Use setbuf(3) or stdbuf(1) to manage standard input/output

buffering.

man setbuf

Recap Address Space Intruding Takeaways 3 / 63

Understanding Buffering

When does the OS use line buffering?
- The operating system uses line buffering when writing to a terminal,

meaning output is sent immediately when a newline character (\n) is
encountered.

- If output is redirected (e.g., through a pipe), the standard output
switches to full buffering, meaning data is only written when the buffer is
full or when the program terminates.
fork() creates an exact copy of the calling process, replicating every bit
of its state, including the contents of buffers:
• The child process receives 0 as the return value.
• The parent process receives the child process ID.
• Other than the return value, the parent and child processes are

identical and execute in parallel in the operating system.

Recap Address Space Intruding Takeaways 4 / 63

Recap

Creating new state machines requires resources
• Continuously creating processes will eventually crash the system.
• Don’t try it on linprog (or try it in a container like Docker).
• Otherwise, I’ll have to go to the server room and reboot the system.

Recap Address Space Intruding Takeaways 5 / 63

Code Analysis: Fork Bomb

:(){ :|:& };: # One-liner version

:() { # Formatted version
: | : &

}; :

f() { # Bash: allows symbols as identifiers
f | f &

}
f

Analogy to Nuclear Fission:
• A heavy atomic nucleus (U-235/Pu-239) is hit by a neutron, splitting

into two lighter nuclei, releasing energy and more neutrons.
• This results in self-replication.

Recap Address Space Intruding Takeaways 6 / 63

Recap

This Lecture:
• Based on our state machine model, a process’s state consists of

memory and registers.
• Registers are well-defined and can be examined using gdb info
registers.

• What is inside the ”flat” address space of a process (0 to 264 − 1)?
• Can we ”invade” another process’s address space?

Recap Address Space Intruding Takeaways 7 / 63

State of State Machine
Register + Memory

Recap Address Space Intruding Takeaways 8 / 63

A Special Instruction

Deterministic Execution:
• Given code and data, the initial state of a process is fully determined.
• Jumping to the entry point leads to a deterministic next state.
• Therefore, every state of the program should be deterministic.

Breaking Determinism:
• The only instruction that can break this determinism is a system call.

Recap Address Space Intruding Takeaways 9 / 63

syscall

Invoking System Calls: syscall
• Delegates control completely to the operating system, allowing

arbitrary modifications.
• An interesting question: What if a program never trusts the operating

system?
Interacting with OS Objects:
• Read/write files (e.g., modify file contents via mmap).
• Modify process state (e.g., create processes, terminate itself).

Program = Computation + Syscall
Question: How do we construct the smallest possible ”Hello, World”?

Recap Address Space Intruding Takeaways 10 / 63

Question 1 in HW2

Constructing the Smallest Hello, World

#include <stdio.h>

int main() {
printf("Hello, World\n");

}

Why is the GCC output not the ”smallest”?
• gcc --verbose hello.c shows all compilation options (there are

many).
• printf is transformed into puts@plt.

• gcc --static hello.c copies the entire libc.
• Use ls -l a.out to check its size.
• Use objdump -d a.out to check its code.

Recap Address Space Intruding Takeaways 11 / 63

Core Idea

Hello, World is also a state machine. We only need to construct the
state machine of several steps and finally invoke a syscall.

This is also the core idea behind the attack: carefully crafting a
sequence of states to eventually hijack execution and trigger the
desired system call.

Recap Address Space Intruding Takeaways 12 / 63

Going Directly with Manual Compilation
Forcing Compilation + Linking: gcc -c + ld
• Directly using ld for linking fails:

• ld does not know how to link library functions...
• An empty main function, however, works:

• The linker produces strange warnings (can be avoided by defining
start).

• But it results in a Segmentation Fault...

WHY?
• Naturally, we observe the execution of the program (state machine).
• Beginners must overcome their fear: STFW/RTFM

(Manual is extremely useful).
• starti helps us execute the program from the first instruction.
• gdb allows switching between two state machine perspectives

(layout).
• x/16x $rsp allows us to check whether the return address or saved

registers have been corrupted.

Recap Address Space Intruding Takeaways 13 / 63

https://sourceware.org/gdb/documentation/

Handling Abnormal Program Exit

Can we make the state machine ”stop”?
• Pure computation states: Not possible.
• Either an infinite loop or undefined behavior.

Solution: syscall

#include <sys/syscall.h>

int main() {
syscall(SYS_exit, 5370);

}

Investigating Code: Where is syscall implemented?
• Bad news: It’s inside libc, making direct linking inconvenient.
• Good news: The code is short, and it seems understandable.

Recap Address Space Intruding Takeaways 14 / 63

Assembly Implementation of Hello, World

minimal.S

movq $SYS_exit, %rax # exit(
movq $1, %rdi # status = 1
syscall #);

Note: GCC supports preprocessing for assembly code (even defining
ASSEMBLER macros).

Where do I find these mysterious tech codes?
• syscall (2), syscalls (2)

• The Friendly Manual is the richest source of information.
Recap: The state machine perspective on programs
• Program = Computation → syscall→ Computation → ...

Recap Address Space Intruding Takeaways 15 / 63

To observe system calls:

• Open two terminals and run the following commands separately:

$ gcc minimal_hello.s -c
$ ld minimal_hello.o
$ strace -f -o ./strace.log /bin/sh
$./a.out

$ tail -f ./strace.log

Recap Address Space Intruding Takeaways 16 / 63

Why does Hello World have colors?

Easter Egg: ANSI Escape Code

Special encoded characters for terminal control:
• telnet towel.blinkenlights.nl (ASCII movie; Ctrl-] and q to

exit)
• dialog --msgbox ’Hello, OS World!’ 8 32

• ssh sshtron.zachlatta.com (online game)
Key takeaways:
• Programming doesn’t have to be boring from the start.
• It may seem complex, but it’s actually quite simple.

Recap Address Space Intruding Takeaways 17 / 63

A Fundamental (but Difficult) Question

Registers are easy to understand (observable using gdb + info
registers).

Process State Model:
• What is ”a process’s memory”?

Recap Address Space Intruding Takeaways 18 / 63

Question 2 in HW2
Objective: Use debugging tools to understand how the address space
works by analyzing program outputs and instruction locations.

#include <stdio.h>
int main()
{

printf("%p\n", main);

int x = *(int*)main;
printf("%x\n", x);

}

Task:
1 Explain why the program produces two different outputs.
2 Specifically analyze how the first output relates to the second output.
3 Your answer should include:

• Two outputs.
• A detailed explanation with calculations of the relationship between the

address, the instruction bytes, and the program’s outputs.
• Explanation supplemented by several screenshots of debugging using
objdump or gdb.

Recap Address Space Intruding Takeaways 19 / 63

What could the following program output?

#include <stdio.h>
int main()
{

printf("%p\n", main);

int x = *(int*)main;
printf("%x\n", x);

}

Recap Address Space Intruding Takeaways 20 / 63

What Memory Access is Valid in the Address Space?

What type of pointer access would NOT cause a segmentation fault?

char *p = random();

*p; // Load

*p = 1; // Store

Recap Address Space Intruding Takeaways 21 / 63

How to View the Address Space of a Linux Process?

(Curious: How is pmap implemented?)

Recap Address Space Intruding Takeaways 22 / 63

Process Address Space
RTFM: man 5 proc

• /proc/[pid]/maps

• pmap

• gdb+info proc mappings

E.g., use gdb printmain and info proc mappings to check the
starting address of the ELF file for a better understanding of Question 2 in
HW2.

• Each segment of the process address space:
• Address range and permissions (rwxsp)
• Corresponding file: offset, dev, inode, pathname
• TFM provides detailed explanations

• Verified with the information from readelf -l

How about using gdb minimal and info proc mappings?
• vvar (Virtual Variable Page)
• vdso (Virtual Dynamic Shared Object)
• vsyscall

Recap Address Space Intruding Takeaways 23 / 63

Our Treasure Found

System Calls Without Kernel Trap
• vdso: A shared library mapped into user space, containing functions

(code) that user programs can call directly instead of invoking a
system call.

• vvar: A read-only memory page in user space that stores
kernel-exported data, such as timekeeping information, to support
‘vdso‘ functions.

Recap Address Space Intruding Takeaways 24 / 63

VDSO

• These optimizations eliminate the need for a costly ‘int 0x80‘ or
‘syscall‘ instruction in specific cases, improving performance.

• Example: time(2) for seconds and gettimeofday(2) (a very clever
implementation)

• strace -e trace=gettimeofday ./vdso Code

Recap Address Space Intruding Takeaways 25 / 63

https://elixir.bootlin.com/linux/v6.12.6/source/lib/vdso/gettimeofday.c#L49
https://github.com/xinliulab/CIS5370_Computer_Security/tree/main/process/vdso

VDSO and VVAR: Communication Mechanism

• We do not need syscalls.
• What we need is a communication channel between user space and

the kernel.
• Shared Memory Page:

• In some extreme cases, a shared page can be read and written by user
programs.

• Periodic Updates: The OS periodically updates the shared page.
• Synchronization: Spinlocks are used to protect the integrity of read

and write operations on this page.

Recap Address Space Intruding Takeaways 26 / 63

Further Questions

execve creates the initial state of a process, including registers and
segments of memory.

Can we control the output of pmap?
• Modify the size of the bss segment in memory
• Allocate large arrays on the stack...

Recap Address Space Intruding Takeaways 27 / 63

Managing Process Address Space

Perspective from the State Machine:
• Address space = memory segments with access permissions

• Does not exist (inaccessible)
• Exists but inaccessible (read/write/execute not allowed)

• Management: Add/Remove/Modify a segment of accessible memory

Question: What kind of system calls would you provide?

Recap Address Space Intruding Takeaways 28 / 63

Memory Map System Calls

Adding/Removing/Modifying Accessible Memory in the State
Machine:
• RTFM: man 2 mmap

• MAP ANONYMOUS: Anonymous memory allocation
• fd: Map files into the process address space (e.g., loading libraries)
• Refer to the manual for more complex behaviors (complexity

increases)

Recap Address Space Intruding Takeaways 29 / 63

Code Injection Attack
Q: When you allocate memory using malloc and inject shellcode or
assembly code into it, attempting to execute the code directly will typically
result in a segmentation fault. This is because the memory allocated by
malloc is marked as readable and writable but not executable, in
accordance with modern operating systems’ NX (Non-Executable) or WX

(Write XOR Execute) policies.
A: To execute code from such a memory region, you need to change its
permissions to executable. This can be achieved by using mmap (with flags
such as PROT READ | PROT WRITE | PROT EXEC) or by using mprotect
to modify the existing memory region’s permissions.
Examples:

// Mapping
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);
int munmap(void *addr, size_t length);

// Modifying permissions
int mprotect(void *addr, size_t length, int prot);

Recap Address Space Intruding Takeaways 30 / 63

Using mmap

Example 1: Allocating a Large Memory Space
• Instantaneous memory allocation

• mmap/munmap provides the mechanism for malloc/free.
• libc’s malloc directly invokes mmap for large allocations.

• Consider using strace/gdb to observe the behavior.

Example 2: Everything is a File
• Map a large file and access only part of it.

with open(’/dev/sda’, ’rb’) as fp:
mm = mmap.mmap(fp.fileno(),

prot=mmap.PROT_READ, length=128 << 30)
hexdump.hexdump(mm[:512])

Recap Address Space Intruding Takeaways 31 / 63

Intruding Address Spaces
How to Make Mods for Games

Recap Address Space Intruding Takeaways 32 / 63

Game Cheat 1: Intruding Address Spaces

• A process (state machine) executes on a ”dispassionate instruction
machine.”

• The state machine is a self-contained world.
• But what if a process is allowed to access the address space of

another process?
• It implies the ability to observe or modify another program’s behavior.
• Sounds pretty cool!

Examples of ”invading” address spaces:
• Debugging (gdb)

• !ps or !pmap in gdb a.out
• gdb allows inspecting and modifying the state of a program.

• Profiling (perf)
• Tools like perf help analyze the performance bottlenecks of a program.

Recap Address Space Intruding Takeaways 33 / 63

How gdb Interacts with ELF and Address Spaces

• How gdb Uses ELF Files
• ELF contains function symbols, variable locations, and debugging

metadata.
• gdb reads the ELF file to get debugging symbols.

• Accessing Another Process’s Address Space
• gdb can attach to a running process.
• It allows inspecting and modifying memory and registers.
• Achieved through system calls (e.g., ptrace in Linux).

Key Concept: The OS as an API and Object
• The OS provides APIs that allow a process to debug another.
• Can these APIs ensure security and prevent unauthorized access?

Recap Address Space Intruding Takeaways 34 / 63

Physical Intrusion into Address Spaces

Golden Finger: Directly Manipulate Physical Memory
• Sounds distant, but it was achievable during the ”cartridge” era!

• Today, we have tools like Debug Registers and Intel Processor Trace.
• These tools assist systems in ”legally intruding” into address spaces.

Recap Address Space Intruding Takeaways 35 / 63

https://perfwiki.github.io/main/

Physical Intrusion into Address Spaces (cont’d)
Game Genie: A Look-up Table (LUT)

• Simple yet elegant: When the CPU reads address a and retrieves x ,
replace it with y .

• Technical Notes (Patents, How did it work?)
Recap Address Space Intruding Takeaways 36 / 63

https://tuxnes.sourceforge.net/gamegenie.html
https://patents.google.com/patent/EP0402067A2/en
https://www.howtogeek.com/706248/what-was-the-game-genie-cheat-device-and-how-did-it-work/

Game Genie as a Firmware

Game Genie as a Boot Loader
• Configures the Look-Up Table (LUT) and loads the cartridge code.
• Functions like a simple ”Boot Loader.”

Recap Address Space Intruding Takeaways 37 / 63

The Blurring Boundaries Between I/O Dev and Comp

• How can we have CPUs for various tasks?

Example: Displaying Patterns
#include <stdio.h>

int main() {
int H = 10;
int W = 10;

for (int i = 1; i <= H; i++) {
for (int j = 1; j <= W; j++)

putchar(j <= i ? ’*’ : ’ ’);
putchar(’\n’);
}

}

Nintendo Entertainment System (NES)
Motherboard

The Challenge of Performance: NES: 6502 @ 1.79MHz; IPC = 0.43
• Screen resolution: 256 x 240 = 61K pixels (256 colors)
• 60FPS ⇒ Each frame must complete within 10K instructions

• How to achieve 60Hz with limited CPU computing power?

Recap Address Space Intruding Takeaways 38 / 63

NES Picture Processing Unit (PPU)

The CPU only describes the
arrangement of 8x8 tiles
• The background is part of a

larger image
• No more than 8 foreground

tiles per line
• The PPU completes the

rendering
• A simpler type of ”CPU”

• Enjoy!

7 6 5 4 3 2 1 0
| | | | | | | |
| | | | | | + + Palette
| | | | + + - - Unimplemented
| | + - - - - - Priority
| + - - - - - - Flip horizontally
+ - - - - - - - Flip vertically

Recap Address Space Intruding Takeaways 39 / 63

https://www.smbgames.be/super-mario-bros.php

Providing Rich Graphics with Limited Capability

Why do the characters in KONAMI’s Contra adopt a prone position with
their legs raised?
• Video

Recap Address Space Intruding Takeaways 40 / 63

https://www.youtube.com/watch?v=8LnwsYL7Apk&t=21m50s

Better 2D Game Engine

What if we have more powerful processors?
• The NES PPU is essentially a ”tile-based” system aligned with the

coordinate axes.
• It only requires addition and bitwise operations to work.

• Greater computational power = More complex graphics rendering.
2D Graphics Accelerator: Image ”Clipping” + ”Pasting”
• Supports rotation, material mapping (scaling), post-processing, etc.

Achieving 3D
• Polygons in 3D space are also polygons in the visual plane.

• Thm. Any polygon with n sides can be divided into n − 2 triangles.

Recap Address Space Intruding Takeaways 41 / 63

Simulated 3D with Clipping and Pasting

GameBoy Advance
• 4 background layers; 128 clipping objects; 32 affine objects

• CPU provides the description; GPU performs the rendering (acting as a
”program-executing” CPU)

V-Rally; Game Boy Advance, 2002

Recap Address Space Intruding Takeaways 42 / 63

https://www.youtube.com/watch?v=xNBSoI0NB7o

But We Still Need True 3D

Triangles in 3D space require correct rendering
• Modeling at this stage includes:

• Geometry, materials, textures, lighting, etc.
• Most operations in the rendering pipeline are massively parallel

”Perspective correct” texture mapping (Wikipedia)

Recap Address Space Intruding Takeaways 43 / 63

Solution: Full PS (Post-Processing)

Example: GLSL (Shading Language)
• Enables ”shader programs” to execute on the GPU

• Can be applied at various rendering stages: vertex, fragment, pixel
shaders

• Functions as a ”PS” program to calculate lighting changes for each part
• Global illumination, reflections, shadows, ambient occlusion, etc.

Recap Address Space Intruding Takeaways 44 / 63

Modern GPU: A General-Purpose Computing Device

A complete multi-core processing system
• Focuses on massively parallel similar tasks

• Programs are written in languages like OpenGL, CUDA, OpenCL, etc.
• Programs are stored in memory (video memory)

• nvcc (LLVM) compiles in two parts
• Main: Compiles/links to a locally executable ELF
• Kernel: Compiles to GPU instructions (sent to drivers)

• Data is also stored in memory (video memory)
• Can output to video interfaces (DP, HDMI, ...)
• Can also use DMA to transfer to system memory

Recap Address Space Intruding Takeaways 45 / 63

Example: PyTorch and Deep Learning

What is a ”Deep Neural Network”?
How do we ”train”?
• Requires computationally intensive tasks

class NeuralNetwork(nn.Module):
def __init__(self):

super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(

nn.Linear(28*28, 512), nn.ReLU(),
nn.Linear(512, 512), nn.ReLU(),
nn.Linear(512, 10), nn.ReLU(),

)
...
model = NeuralNetwork().to(’cuda’)

Recap Address Space Intruding Takeaways 46 / 63

Dark Silicon Age and Heterogeneous Computing

Many components can perform the ”same task”
• The key is to choose the component with the most suitable

power/performance/time trade-off!

Examples of Components:
• CPU, GPU, NPU, DSP, DSM/RDMA

Recap Address Space Intruding Takeaways 47 / 63

Game Cheat 2: Expanding Game Exploration

Address Space: Where is the ”Gold”?
• Includes dynamically allocated memory, with varying addresses every

time.
• Insight: Everything is a state machine.

• By observing the trace of state changes, you can identify the valuable
addresses.

Search + Filter
• Enter the game: exp = 4610.
• Perform an action: exp = 5370.
• Match the memory locations where 4610 → 5370 occurs.

• These memory locations are very few.
• Once found, you’re satisfied!

Recap Address Space Intruding Takeaways 48 / 63

Game Cheat 3: Automation with Precision

Repeating Fixed Tasks at Scale (e.g., 1 second, 5370 shots)

Enjoy!
• Example shown demonstrates automating repetitive actions with

precise timing.
• Such tools enable consistent execution of predefined tasks without

manual intervention.

Recap Address Space Intruding Takeaways 49 / 63

https://js13kgames.com/games/spacebar-clicker/index.html

Implementing Precision Automation

Sending Keyboard/Mouse Events to Processes
• Developing Drivers (e.g., custom keyboard/mouse drivers)
• Leveraging System Window Manager APIs

• xdotool: Useful for testing, including plugins for VSCode
• ydotool
• evdev: Commonly used for live streaming or scripting key sequences

Application in 2024: Implementing AI Copilot Agent
• Automating workflows: Text/Image Capture → AI Analysis → Execute

Actions

Recap Address Space Intruding Takeaways 50 / 63

https://github.com/jordansissel/xdotool
https://github.com/ReimuNotMoe/ydotool
https://www.kernel.org/doc/html/latest/input/input.html

Game Cheat 4: Adjusting Logic Update Speed
Adjusting the Game’s Logic Update Speed
• For example, a certain mysterious company’s game is so slow that

both map traversal and combat feel unbearable.
• The gaming industry today has become so competitive that if a new

player’s progression path isn’t smooth, the game will be heavily
criticized.

Recap Address Space Intruding Takeaways 51 / 63

Principle of Speed Modification: Theory

Program = State Machine
• ”Compute instructions” are inherently unaware of time.
• Using count for timing can lead to issues where the game becomes

unplayable on faster machines.
• Syscalls are the only way for a program to perceive time.

”Hijacking” Time-Related Syscall/Library Functions
• gettimeofday, sleep, alarm
• Replacing the system call’s code with our own code allows us to alter

the program’s perception of time.
• Similar to adjusting a clock to make it appear faster or slower.

Recap Address Space Intruding Takeaways 52 / 63

Code Injection: Hooking Functions with Code

• Using a piece of code to hook the execution of a function.
• Allows tampering with the program’s logic and gaining control.

Recap Address Space Intruding Takeaways 53 / 63

Hooking in Game Cheats

How Hooking is Used in Game Cheats
• Hooking intercepts and modifies game functions to manipulate game

behavior.
• Commonly used in ESP (Extra Sensory Perception) cheats, Aimbots,

and Wallhacks.
Methods of Hooking:
• DirectX/OpenGL Hooking: Modifies rendering functions like
D3D11Present to draw ESP overlays.

• System Call Hooking: Alters time-related functions (e.g., gettimeofday)
to manipulate game physics.

• Memory Hooking: Modifies in-game variables (e.g., hp = 9999) in
real-time.

Example: ESP Wallhack
• Hooks rendering APIs to bypass depth checks.
• Modifies enemy rendering to make them visible through walls.

Recap Address Space Intruding Takeaways 54 / 63

Custom Game Cheats

The Essence of ”Hijacking Code” is Debugger Behavior
• A game is also a program, and a state machine.
• A cheat tool is essentially a gdb designed specifically for the game.

Example: Locking Health Points
• Create a thread to spin and modify:

while (1) hp = 9999;

• However, conditions like hp < 0 (e.g., instant death) may still occur.
• Solution: Patch the code that checks hp < 0 (soft dynamic updates).

Recap Address Space Intruding Takeaways 55 / 63

Code Injection (cont’d)

”I heard that Devil Fruits are the incarnations of sea demons. Eating
one grants devil-like abilities, but in return, the sea will reject the user.”

Enjoy!

Recap Address Space Intruding Takeaways 56 / 63

https://www.youtube.com/watch?v=Uf2uAgYLsNo

Game Cheat 5: DMA
DMA (Direct Memory Access): A dedicated CPU for executing ”memcpy”
operations
• Adding a general-purpose processor is too costly
• A simple controller is a better solution
• Supported types of memcpy:

• memory → memory
• memory → device (register)
• device (register) → memory

• Practical implementation: Directly connect the DMA controller to the bus
and memory

• Intel 8237A

Recap Address Space Intruding Takeaways 57 / 63

https://pdos.csail.mit.edu/6.828/2018/readings/hardware/8237A.pdf

More on DMA

• CPU is not involved in copying data
• A process cannot access in-transit data
• PCI bus supports DMA

• Handles a large number of complex tasks

Recap Address Space Intruding Takeaways 58 / 63

Why Does DMA Cheating Exist?

• Modern anti-cheat methods rely on detecting memory modifications.
• Kernel-level anti-cheat software (e.g., Vanguard, BattleEye) prevents

direct process memory access.
• Reading memory via software (e.g., external cheats) is highly

detectable.
• DMA bypasses all software-based detection because it directly

accesses memory without CPU intervention.

Recap Address Space Intruding Takeaways 59 / 63

How DMA Cheats Work
1 A second computer with a DMA capture card is used.
2 The card is installed in the main gaming PC via PCIe.
3 The DMA card reads game memory and extracts relevant data (e.g.,

player positions).
4 The extracted data is sent to the second PC for processing.
5 The second PC renders an ESP (extra-sensory perception) overlay,

giving the player an unfair advantage.
6 Since the main PC runs no cheat software, anti-cheat solutions fail to

detect it.

Recap Address Space Intruding Takeaways 60 / 63

Why Is It Hard to Detect?

• No modification of game memory (only reading).
• No injected code, unlike traditional hacks.
• Appears as a legitimate PCIe device, making it difficult to blacklist.

Current Anti-Cheat vs. DMA

Anti-Cheat Method Effectiveness Against DMA
Signature Scanning Ineffective (DMA is external)
Kernel-Level Hooks Ineffective (DMA doesn’t use system calls)
Code Integrity Checks Ineffective (No code modification)
Behavior Analysis Partially Effective (Detecting unnatural movements)

Recap Address Space Intruding Takeaways 61 / 63

Future of Anti-DMA Methods

• Hardware-based solutions: Restricting PCIe device access via
BIOS/firmware.

• AI-based detection: Tracking suspicious player behavior.
• Encrypted memory: Preventing DMA from extracting useful data.
• Currently, no effective universal countermeasure exists.

Recap Address Space Intruding Takeaways 62 / 63

Takeaways: On Cheats and Code Injection

Cheats Can Also Serve “Good” Purposes:
• Live Kernel Patching: Enable “hot” updates without stopping the

system.
• Techniques, whether in computing systems, programming languages,

or artificial intelligence, are meant to provide benefits to humans —
for example, debugging tools and even cheats can help game
developers or testers improve performance.

Ethics of Technology:
• Strong technology always has both “good” and “bad” applications.
• Any misuse of technology to harm others is a violation of integrity.

Similarly, if cheats are used for malicious purposes in games, we
should also consider the moral implications and use tools responsibly.

Recap Address Space Intruding Takeaways 63 / 63

https://github.com/dynup/kpatch

	Recap
	Address Space
	Intruding
	Takeaways

