
Lecture 6: Hacking the Execution Flow
(From ELF to EXE and Beyond)

Xin Liu

Florida State University
xliu15@fsu.edu

CIS 5370 Computer Security
https://xinliulab.github.io/cis5370.html

mailto:xliu15j@fsu.edu
https://xinliulab.github.io/cis5370.html

Outline

Today’s Key Question:
• Buffer Overflow Is Not Enough!
• How can we understand and exploit program execution?

Main Topics for Today:
• Executable and Linkable Format (ELF):

• Structure, Creation, and How ELF Is Executed
• Create Your Own ELF

• Memory Execution Process:
• From Source Code to Execution
• Create Your Own execve

• Security Implications:
• Identifying and Addressing Vulnerabilities
• Techniques for Secure Programming

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 1 / 34

Excutable Linkable File
(ELF)

Making the Program Recognizable to the Machine

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 2 / 34

Example: Minimum HelloWorld

$ ls -l
$ file helloworld
$ cat helloworld
$ cat helloworld | hexdump | less

Magic Number: 0x 457f 464c

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 3 / 34

What is an Executable File?
Before Learning Computer Security:
• ”That thing you double-click to open a window”

After Learning Computer Security:
• An object in the operating system (a file)
• A sequence of bytes (we can edit it as characters)
• A data structure that describes the initial state of a state

machine (Better understand attacks like buffer overflows,
format string vulnerabilities, heap overflows, integer
overflows, and other related attacks).

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 4 / 34

ELF is A Data Structure

The computer is a machine.
Everything in the computer is a state machine.
Executable files describes the initial state of a process.
• Each line of assembly code represents a state transition.
• When using the system call execve , the initial state of the

program, as defined in the ELF, is fixed.
• There is a document that explicitly defines what the initial state

of the program should be.

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 5 / 34

RTFM: Read The ”Fine” Manual

Key Manuals for This Lesson:
• System V ABI: Defines the System V Application Binary

Interface for the AMD64 architecture, providing essential
specifications for binary compatibility.

• The answer of in-class quiz 2
• System V ABI (AMD64 Architecture Processor Supplement)
• Section 3.4 Process Initialization

• Figure 3.9 Initial Process Stack
• Specifies certain parts of registers and memory.
• Other states (mainly in memory) are determined by the

executable file.
• Refspecs: Additional reference specifications to deepen

understanding of Linux-based systems.
• Linux Refspecs

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 6 / 34

https://cs61.seas.harvard.edu/site/pdf/x86-64-abi-20210928.pdf
https://refspecs.linuxbase.org/

What Exactly is the State of a Process?

The State of a Process:
• The process state is composed of:

• Memory: Describes the program’s address space and its
contents.

• Registers: Includes general-purpose registers and
program-specific configurations.

However,
• Figure 3.9 (System V ABI) shows the initial process stack, but

this is not part of the executable file itself.
• It is the responsibility of the operating system to construct the

initial stack based on the ABI specification.

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 7 / 34

What Does the ELF Actually Define?

ELF and Memory Data Structures:
• The ELF defines how data is structured in memory, including

both fixed and dynamic components.
• These structures are binary and can be complex to interpret

directly.
• Specialized tools like readelf and objdump are essential for

reading and understanding these memory structures.

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 8 / 34

Binutils - Binary Utilities
GNU Binutils: Essential Tools for Executable Files
• Creating Executable Files:

• ld (Linker): Combines object files into a single executable.
• as (Assembler): Translates assembly code into machine code.
• ar and ranlib : Manage static libraries.

• Analyzing Executable Files:
• objcopy , objdump , readelf : Inspect and modify

executables, often used in computer systems basics.
• addr2line : Maps addresses to line numbers for debugging.
• size , nm : Display size information and symbol tables.

Learn More: GNU Binutils Official Page
So, I can use the command size to determine the smallest ’Hello
World’ program from each student’s HW2 and give extra credit to

the one with the smallest.

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 9 / 34

https://www.gnu.org/software/binutils/

Why Can We See All This Information?

Debugging Information Added During Compilation:
• When we compile with debug flags, the compiler includes extra

information in the binary.
• This information allows tools like objdump and addr2line to

map assembly code back to the original source code.

Example Command:
• Using gcc -g -S hello.c generates assembly code with

debugging information.
• This enables us to see additional sections in the assembly

output, including variable names, line numbers, and other
metadata.

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 10 / 34

Standard of Debugging Information
Mapping Machine State to “C World” State:
• The DWARF Debugging Standard (dwarfstd.org) defines an

instruction set, DW OP XXX, that is Turing Complete.
• This instruction set can perform “arbitrary computations” to

map the current machine state back to the C language state.

Challenges and Limitations:
• Limited Support for Modern Languages: Advanced features

(e.g., C++ templates) are not fully supported.
• Complexity of Programming Languages: As languages

evolve, it becomes increasingly challenging to accurately map
machine states to source code.

• Compiler Limitations: Compilers may not always produce
perfect debug information, leading to issues like:

• Frustrating instances of variables being <optimized out>
• Incorrect or incomplete debugging information

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 11 / 34

https://dwarfstd.org/

Reverse Engineering
• Provides insights into commercial software without access to

the original source code.
• Challenges:

• No Debug Information
• Stripped Symbols
• Opaque Instruction Sequences

• Techniques:
• Analysts use specialized tools (e.g., objdump, IDA Pro, Ghidra)

to disassemble and analyze the instruction sequences.
• Techniques like pattern recognition, control flow analysis, and

heuristic methods help infer program functionality.

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 12 / 34

Funny Little Executable
Let’s create our own ELF file from scratch.

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 13 / 34

Why is learning ELF so challenging?
No difference for you!
$ readelf -a helloworld
$ cat helloworld

Reflection:
• ELF is not a human-friendly ”state machine data structure.”
• For the sake of performance, it sacrifices readability, violating

the principle of ”information locality.”
Almost Like Reading a Core Dump:
• ”Hell’s joke: Today’s core dump is an ELF file.”

Magnetic Core Memory
• The origin of ”Segmentation

fault (core dumped)”
• Non-volatile memory! Magnetic core memory, storing data by the magnetization

direction of tiny ferrite cores. Each core represents a single
bit, retaining data even when powered off.

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 14 / 34

But It Wasn’t Always Like This
UNIX a.out ”assembler output”

• A relatively simple data structure
• Describes the initial state (structure) of the address space
• Once the data is loaded into the process and the pointer is set

to the entry point, the program can start running.
struct exec {

uint32_t a_midmag; // Machine ID & Magic
uint32_t a_text; // Text segment size
uint32_t a_data; // Data segment size
uint32_t a_bss; // BSS segment size
uint32_t a_syms; // Symbol table size
uint32_t a_entry; // Entry point
uint32_t a_trsize; // Text reloc table size
uint32_t a_drsize; // Data reloc table size

};

Why Was It Replaced?
• Limited functionality:

• No support for dynamic linking, debugging information (why
gdb works), thread-local storage, etc.

• Naturally phased out due to increasing demands.
Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 15 / 34

https://man.freebsd.org/cgi/man.cgi?a.out(5)

In Other Words...

The More Features Supported, the Less Human-Friendly:
• Hearing terms like ”program header,” ”section header” feels

overwhelming for the human brain.
• Contains cryptic values like R X86 64 32, R X86 64 PLT32.
• A massive amount of ”pointers” (essentially unreadable to

humans).
• LLM can help us read them, but it’s still far from easy!

A More Human-Friendly Approach:
• Simpler and flatter design is easier to understand.
• All necessary information is immediately visible.

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 16 / 34

A Chance to Redesign

Design Your Own FLE:
• FLE:

• Funny (Fluffy) Linkable Executable
• Project 1: Friendly Learning Executable (my favorite!)

Core Design Principles:
• Make everything human-readable (all information should be at

the top).
• Revisit the core concepts of linking and loading: code, symbols,

relocations.
• How would you design it?

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 17 / 34

Let’s use emojis!

Code , Symbols , and Relocations
By combining these three elements, we can create an executable
file!

: ff ff ff ff ff ff ff ff
: ff ff ff ff ff ff ff ff
: start
: 48 c7 c0 2a 00 00 00
: 48 c7 c7 2a 00 00 00
: 0f 05 ff ff ff ff ff ff
: ff ff ff ff ff ff ff ff
: i32(unresolved symbol - 0x4 -)
• You can use text to hack the excutable file.
• You can also get the debugging information.

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 18 / 34

Implementation of FLE Binutils

Implemented Tools:
• exec (loader)
• objdump/readfle/nm (display)
• cc/as (compiler/assembler)
• ld (linker)

Most Components Reuse GNU Binutils:
• elf to fle

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 19 / 34

Step 1: Preprocessing and Compilation

Source Code (.c) → Intermediate Code (.i):
• Ctrl-C & Ctrl-V (#include)

• GCC first performs a preprocessing step without macros
gcc -E foo.c | less

•
• String substitution
• Today: We use macros

Intermediate Code (.i) → Assembly Code (.s):
• Translation from ”high-level state machine” to ”low-level state

machine”
• Final output: annotated instruction sequences

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 20 / 34

Generating Executable Files (2): Compilation

Assembly Code (.s) → Object File (.o):
• File = sections (.text, .data, .rodata.str1.1, ...)

• For ELF, each section has its own permissions and stores
corresponding information.

• Three key elements in a section:
• Code: Sequence of instructions.
• Symbols: Marks the location of ”current.”
• Relocations: Values that cannot be determined yet (resolved

during linking).

Quick Quiz: What is the difference between global and local
symbols in ELF? Are there other types of symbols?

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 21 / 34

Generating Executable Files (3): (Static) Linking

Multiple Object Files (.o) → Executable File (a.out):
• Combine all sections:

• Merge code from .text, .data, .bss, etc.
• Flatten sections into a linear sequence.
• Determine the locations of all symbols.
• Resolve all relocations.

• Produce a single executable file:
• A description of the program’s initial memory state.

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 22 / 34

FLE Program: Loading

Load the ”byte sequence” into memory:
• That’s all there is to do.
• Then set the correct PC (program counter) and start running.

mem = mmap.mmap(
fileno=-1, length=len(bs),
prot=mmap.PROT_READ | mmap.PROT_WRITE | mmap.PROT_EXEC

,
flags=mmap.MAP_PRIVATE | mmap.MAP_ANONYMOUS,

)
mem.write(bs)
mem.flush()
call_pointer(mem, fle[’symbols’][’_start’])

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 23 / 34

Shebang

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 24 / 34

#! - Shebang

Easter Egg:
• Our FLE files can be executed directly:

#!/./exec

The ”magic” of #! in UNIX:
• Example: file.bin

#!A B C

• The operating system executes:
execve(A, ["A", "B C", "file.bin"], envp)

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 25 / 34

Example: Executable Files on an Operating System

Requirements for an Executable File:
• Must have execution (‘x‘) permission.
• Must be in a format that the loader can recognize as

executable.

Example Commands and Output:
$./a.c
bash: ./a.c: Permission denied

$./a.c
bash: ./a.c: Permission denied

$ chmod -x a.out && ./a.out
bash: The file ’./a.out’ is not executable by this user

$ chmod +x a.c && ./a.c
Failed to execute process ’./a.c’. Reason:
exec: Exec format error
The file ’./a.c’ is marked as an executable but could not

be run by the operating system.

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 26 / 34

Who Decides If a File is Executable?
The Operating System (OS Code - execve) Determines
Executability:
• The OS, through execve, decides whether a file can be

executed.

Try It Out:
• Use strace to trace execve calls and observe execution

failures.
• strace ./a.c

• Without execute permission on a.c: execve returns -1, EACCES
• With execute permission but incorrect format on a.c: execve

returns -1, ENOEXEC

She-bang (#!/path/to/interpreter):
• The She-bang (#!) allows specifying an interpreter for a script

or executable.
• She-bang effectively performs a “parameter swap” in execve,

launching the specified interpreter to execute the file.
Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 27 / 34

Example: Running Python Code in a C File

• Save the Following Code as helloworld.c:
#! /usr/bin/python3
print("Hello World!")

• Give the file execute permission:
$ chmod +x helloworld.c

• Now, you can directly run the helloworld.c file to execute
the Python code:
$./helloworld.c
Hello World!

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 28 / 34

Static Linking and Loading

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 29 / 34

Why ELF When We Have FLE?

If you want to build Chrome (2017):
• 2 GiB binary (with debug info)
• 17,000 files
• 1,800,000 sections
• 6,300,000 symbols
• 13,000,000 relocations

C++ Name Mangling:
• Example: ZNK8KxVectorI6DlTypejEixEj is:

KxVector<DlType, unsigned int>::operator[](unsigned int) const

• (It seems impossible to skip pointers.)

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 30 / 34

ELF Linking

Built upon FLE: readelf -a provides detailed insights!
Sections: More sections; more flags

[Nr] Name Type Address Offset
Size EntSize Flags Link Info Align

[5] .tdata PROGBITS 0000000000000000 0000000c
00000004 00000000 WAT 0 0 4

Relocations: Similar but more powerful

Offset Info Type Name + Addend
0000000000000016 0000000000000004 R_X86_64_GOTPCREL x - 4
0000000000000020 0000000000000006 R_X86_64_TPOFF32 y - 4

extern thread int x;
extern thread int y;

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 31 / 34

Loading: ELF vs. FLE

FLE Loader: Does Only One Thing
• Copies a single byte sequence into the address space:

• Grants read, write, and execute permissions.
• Then jumps to start for execution.

ELF: Not Much More
• Copies multiple segments into the address space:

• Separately grants read, write, and execute permissions.
• Then jumps to the specified entry point (default: start) for

execution.

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 32 / 34

Loading: ELF vs. FLE (cont’d)

They Are Both Data Structures
• Example: ELF is a ”binary data structure.”
• readelf -l describes how it is loaded:

• Offset: Segment’s offset in the file.
• VirtAddr: Virtual address where the segment is loaded in

memory.
• PhysAddr: Physical address (rarely used).
• FileSize: Number of bytes in the segment in the file.
• MemSize: Number of bytes in the segment in memory (may

exceed file size).
• Flags: Permissions, such as RWE (Read, Write, Execute).
• Align: Alignment of the segment’s virtual address.

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 33 / 34

Understanding Executable Files and Buffer Overflow

• What is an Executable File?
• An executable file is a data structure (a sequence of bytes) that

describes the initial state of a state machine.
• The loader transfers this ”initial state” into the operating system.
• It is difficult to read because it was never designed for human

readability.
• It helps us understanding the buffer overflow:

• Why can we use gdb to compute stack offsets that helps analyze
function call stack structures?

• Observing local variables, return addresses, and how an
overflow can overwrite the return address.

• Redirecting execution to malicious code (e.g., shellcode) reveals
how control flow is hijacked.

• This process provides insight into program execution, stack
management, and security vulnerabilities.

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 34 / 34

	Outline
	ELF
	DIY
	EXECVE
	EXECVE
	Executable Files and Buffer Overflow

