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Outline

Today’s Key Question:
• Buffer Overflow Is Not Enough!
• How can we understand and exploit program execution?

Main Topics for Today:
• Executable and Linkable Format (ELF):

• Structure, Creation, and How ELF Is Executed
• Create Your Own ELF

• Memory Execution Process:
• From Source Code to Execution
• Create Your Own execve

• Security Implications:
• Identifying and Addressing Vulnerabilities
• Techniques for Secure Programming
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Excutable Linkable File
(ELF)

Making the Program Recognizable to the Machine
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Example: Minimum HelloWorld

$ ls -l
$ file helloworld
$ cat helloworld
$ cat helloworld | hexdump | less

Magic Number: 0x 457f 464c

Outline ELF DIY EXECVE EXECVE Executable Files and Buffer Overflow 3 / 34



What is an Executable File?
Before Learning Computer Security:
• ”That thing you double-click to open a window”

After Learning Computer Security:
• An object in the operating system (a file)
• A sequence of bytes (we can edit it as characters)
• A data structure that describes the initial state of a state

machine (Better understand attacks like buffer overflows,
format string vulnerabilities, heap overflows, integer
overflows, and other related attacks).
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ELF is A Data Structure

The computer is a machine.
Everything in the computer is a state machine.
Executable files describes the initial state of a process.
• Each line of assembly code represents a state transition.
• When using the system call execve , the initial state of the

program, as defined in the ELF, is fixed.
• There is a document that explicitly defines what the initial state

of the program should be.
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RTFM: Read The ”Fine” Manual

Key Manuals for This Lesson:
• System V ABI: Defines the System V Application Binary

Interface for the AMD64 architecture, providing essential
specifications for binary compatibility.

• The answer of in-class quiz 2
• System V ABI (AMD64 Architecture Processor Supplement)
• Section 3.4 Process Initialization

• Figure 3.9 Initial Process Stack
• Specifies certain parts of registers and memory.
• Other states (mainly in memory) are determined by the

executable file.
• Refspecs: Additional reference specifications to deepen

understanding of Linux-based systems.
• Linux Refspecs
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What Exactly is the State of a Process?

The State of a Process:
• The process state is composed of:

• Memory: Describes the program’s address space and its
contents.

• Registers: Includes general-purpose registers and
program-specific configurations.

However,
• Figure 3.9 (System V ABI) shows the initial process stack, but

this is not part of the executable file itself.
• It is the responsibility of the operating system to construct the

initial stack based on the ABI specification.
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What Does the ELF Actually Define?

ELF and Memory Data Structures:
• The ELF defines how data is structured in memory, including

both fixed and dynamic components.
• These structures are binary and can be complex to interpret

directly.
• Specialized tools like readelf and objdump are essential for

reading and understanding these memory structures.
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Binutils - Binary Utilities
GNU Binutils: Essential Tools for Executable Files
• Creating Executable Files:

• ld (Linker): Combines object files into a single executable.
• as (Assembler): Translates assembly code into machine code.
• ar and ranlib : Manage static libraries.

• Analyzing Executable Files:
• objcopy , objdump , readelf : Inspect and modify

executables, often used in computer systems basics.
• addr2line : Maps addresses to line numbers for debugging.
• size , nm : Display size information and symbol tables.

Learn More: GNU Binutils Official Page
So, I can use the command size to determine the smallest ’Hello
World’ program from each student’s HW2 and give extra credit to

the one with the smallest.
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Why Can We See All This Information?

Debugging Information Added During Compilation:
• When we compile with debug flags, the compiler includes extra

information in the binary.
• This information allows tools like objdump and addr2line to

map assembly code back to the original source code.

Example Command:
• Using gcc -g -S hello.c generates assembly code with

debugging information.
• This enables us to see additional sections in the assembly

output, including variable names, line numbers, and other
metadata.
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Standard of Debugging Information
Mapping Machine State to “C World” State:
• The DWARF Debugging Standard (dwarfstd.org) defines an

instruction set, DW OP XXX, that is Turing Complete.
• This instruction set can perform “arbitrary computations” to

map the current machine state back to the C language state.

Challenges and Limitations:
• Limited Support for Modern Languages: Advanced features

(e.g., C++ templates) are not fully supported.
• Complexity of Programming Languages: As languages

evolve, it becomes increasingly challenging to accurately map
machine states to source code.

• Compiler Limitations: Compilers may not always produce
perfect debug information, leading to issues like:

• Frustrating instances of variables being <optimized out>
• Incorrect or incomplete debugging information
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Reverse Engineering
• Provides insights into commercial software without access to

the original source code.
• Challenges:

• No Debug Information
• Stripped Symbols
• Opaque Instruction Sequences

• Techniques:
• Analysts use specialized tools (e.g., objdump, IDA Pro, Ghidra)

to disassemble and analyze the instruction sequences.
• Techniques like pattern recognition, control flow analysis, and

heuristic methods help infer program functionality.
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Funny Little Executable
Let’s create our own ELF file from scratch.
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Why is learning ELF so challenging?
No difference for you!
$ readelf -a helloworld
$ cat helloworld

Reflection:
• ELF is not a human-friendly ”state machine data structure.”
• For the sake of performance, it sacrifices readability, violating

the principle of ”information locality.”
Almost Like Reading a Core Dump:
• ”Hell’s joke: Today’s core dump is an ELF file.”

Magnetic Core Memory
• The origin of ”Segmentation

fault (core dumped)”
• Non-volatile memory! Magnetic core memory, storing data by the magnetization

direction of tiny ferrite cores. Each core represents a single
bit, retaining data even when powered off.
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But It Wasn’t Always Like This
UNIX a.out ”assembler output”

• A relatively simple data structure
• Describes the initial state (structure) of the address space
• Once the data is loaded into the process and the pointer is set

to the entry point, the program can start running.
struct exec {

uint32_t a_midmag; // Machine ID & Magic
uint32_t a_text; // Text segment size
uint32_t a_data; // Data segment size
uint32_t a_bss; // BSS segment size
uint32_t a_syms; // Symbol table size
uint32_t a_entry; // Entry point
uint32_t a_trsize; // Text reloc table size
uint32_t a_drsize; // Data reloc table size

};

Why Was It Replaced?
• Limited functionality:

• No support for dynamic linking, debugging information (why
gdb works), thread-local storage, etc.

• Naturally phased out due to increasing demands.
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In Other Words...

The More Features Supported, the Less Human-Friendly:
• Hearing terms like ”program header,” ”section header” feels

overwhelming for the human brain.
• Contains cryptic values like R X86 64 32, R X86 64 PLT32.
• A massive amount of ”pointers” (essentially unreadable to

humans).
• LLM can help us read them, but it’s still far from easy!

A More Human-Friendly Approach:
• Simpler and flatter design is easier to understand.
• All necessary information is immediately visible.
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A Chance to Redesign

Design Your Own FLE:
• FLE:

• Funny (Fluffy) Linkable Executable
• Project 1: Friendly Learning Executable (my favorite! )

Core Design Principles:
• Make everything human-readable (all information should be at

the top).
• Revisit the core concepts of linking and loading: code, symbols,

relocations.
• How would you design it?
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Let’s use emojis!

Code , Symbols , and Relocations
By combining these three elements, we can create an executable
file!

: ff ff ff ff ff ff ff ff
: ff ff ff ff ff ff ff ff
: start
: 48 c7 c0 2a 00 00 00
: 48 c7 c7 2a 00 00 00
: 0f 05 ff ff ff ff ff ff
: ff ff ff ff ff ff ff ff
: i32(unresolved symbol - 0x4 - )
• You can use text to hack the excutable file.
• You can also get the debugging information.
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Implementation of FLE Binutils

Implemented Tools:
• exec (loader)
• objdump/readfle/nm (display)
• cc/as (compiler/assembler)
• ld (linker)

Most Components Reuse GNU Binutils:
• elf to fle
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Step 1: Preprocessing and Compilation

Source Code (.c) → Intermediate Code (.i):
• Ctrl-C & Ctrl-V (#include)

• GCC first performs a preprocessing step without macros
gcc -E foo.c | less

•
• String substitution
• Today: We use macros

Intermediate Code (.i) → Assembly Code (.s):
• Translation from ”high-level state machine” to ”low-level state

machine”
• Final output: annotated instruction sequences
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Generating Executable Files (2): Compilation

Assembly Code (.s) → Object File (.o):
• File = sections (.text, .data, .rodata.str1.1, ...)

• For ELF, each section has its own permissions and stores
corresponding information.

• Three key elements in a section:
• Code: Sequence of instructions.
• Symbols: Marks the location of ”current.”
• Relocations: Values that cannot be determined yet (resolved

during linking).

Quick Quiz: What is the difference between global and local
symbols in ELF? Are there other types of symbols?
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Generating Executable Files (3): (Static) Linking

Multiple Object Files (.o) → Executable File (a.out):
• Combine all sections:

• Merge code from .text, .data, .bss, etc.
• Flatten sections into a linear sequence.
• Determine the locations of all symbols.
• Resolve all relocations.

• Produce a single executable file:
• A description of the program’s initial memory state.
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FLE Program: Loading

Load the ”byte sequence” into memory:
• That’s all there is to do.
• Then set the correct PC (program counter) and start running.

mem = mmap.mmap(
fileno=-1, length=len(bs),
prot=mmap.PROT_READ | mmap.PROT_WRITE | mmap.PROT_EXEC

,
flags=mmap.MAP_PRIVATE | mmap.MAP_ANONYMOUS,

)
mem.write(bs)
mem.flush()
call_pointer(mem, fle[’symbols’][’_start’])
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Shebang
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#! - Shebang

Easter Egg:
• Our FLE files can be executed directly:

#!/./exec

The ”magic” of #! in UNIX:
• Example: file.bin

#!A B C

• The operating system executes:
execve(A, ["A", "B C", "file.bin"], envp)
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Example: Executable Files on an Operating System

Requirements for an Executable File:
• Must have execution (‘x‘) permission.
• Must be in a format that the loader can recognize as

executable.

Example Commands and Output:
$ ./a.c
bash: ./a.c: Permission denied

$ ./a.c
bash: ./a.c: Permission denied

$ chmod -x a.out && ./a.out
bash: The file ’./a.out’ is not executable by this user

$ chmod +x a.c && ./a.c
Failed to execute process ’./a.c’. Reason:
exec: Exec format error
The file ’./a.c’ is marked as an executable but could not

be run by the operating system.
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Who Decides If a File is Executable?
The Operating System (OS Code - execve) Determines
Executability:
• The OS, through execve, decides whether a file can be

executed.

Try It Out:
• Use strace to trace execve calls and observe execution

failures.
• strace ./a.c

• Without execute permission on a.c: execve returns -1, EACCES
• With execute permission but incorrect format on a.c: execve

returns -1, ENOEXEC

She-bang (#!/path/to/interpreter):
• The She-bang (#!) allows specifying an interpreter for a script

or executable.
• She-bang effectively performs a “parameter swap” in execve,

launching the specified interpreter to execute the file.
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Example: Running Python Code in a C File

• Save the Following Code as helloworld.c:
#! /usr/bin/python3
print("Hello World!")

• Give the file execute permission:
$ chmod +x helloworld.c

• Now, you can directly run the helloworld.c file to execute
the Python code:
$ ./helloworld.c
Hello World!
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Static Linking and Loading
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Why ELF When We Have FLE?

If you want to build Chrome (2017):
• 2 GiB binary (with debug info)
• 17,000 files
• 1,800,000 sections
• 6,300,000 symbols
• 13,000,000 relocations

C++ Name Mangling:
• Example: ZNK8KxVectorI6DlTypejEixEj is:

KxVector<DlType, unsigned int>::operator[](unsigned int) const

• (It seems impossible to skip pointers.)
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ELF Linking

Built upon FLE: readelf -a provides detailed insights!
Sections: More sections; more flags

[Nr] Name Type Address Offset
Size EntSize Flags Link Info Align

[ 5] .tdata PROGBITS 0000000000000000 0000000c
00000004 00000000 WAT 0 0 4

Relocations: Similar but more powerful

Offset Info Type Name + Addend
0000000000000016 0000000000000004 R_X86_64_GOTPCREL x - 4
0000000000000020 0000000000000006 R_X86_64_TPOFF32 y - 4

extern thread int x;
extern thread int y;
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Loading: ELF vs. FLE

FLE Loader: Does Only One Thing
• Copies a single byte sequence into the address space:

• Grants read, write, and execute permissions.
• Then jumps to start for execution.

ELF: Not Much More
• Copies multiple segments into the address space:

• Separately grants read, write, and execute permissions.
• Then jumps to the specified entry point (default: start) for

execution.
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Loading: ELF vs. FLE (cont’d)

They Are Both Data Structures
• Example: ELF is a ”binary data structure.”
• readelf -l describes how it is loaded:

• Offset: Segment’s offset in the file.
• VirtAddr: Virtual address where the segment is loaded in

memory.
• PhysAddr: Physical address (rarely used).
• FileSize: Number of bytes in the segment in the file.
• MemSize: Number of bytes in the segment in memory (may

exceed file size).
• Flags: Permissions, such as RWE (Read, Write, Execute).
• Align: Alignment of the segment’s virtual address.
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Understanding Executable Files and Buffer Overflow

• What is an Executable File?
• An executable file is a data structure (a sequence of bytes) that

describes the initial state of a state machine.
• The loader transfers this ”initial state” into the operating system.
• It is difficult to read because it was never designed for human

readability.
• It helps us understanding the buffer overflow:

• Why can we use gdb to compute stack offsets that helps analyze
function call stack structures?

• Observing local variables, return addresses, and how an
overflow can overwrite the return address.

• Redirecting execution to malicious code (e.g., shellcode) reveals
how control flow is hijacked.

• This process provides insight into program execution, stack
management, and security vulnerabilities.
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