Lecture 6: Hacking the Execution Flow

(From ELF to EXE and Beyond)

Xin Liu

Florida State University
xliu15@fsu.edu

CIS 5370 Computer Security
https://xinliulab.github.io/cis5370.html

mailto:xliu15j@fsu.edu
https://xinliulab.github.io/cis5370.html

Today’s Key Question:
e Buffer Overflow Is Not Enough!
e How can we understand and exploit program execution?

Main Topics for Today:
e Executable and Linkable Format (ELF):

® Structure, Creation, and How ELF Is Executed
® Create Your Own ELF

e Memory Execution Process:

® From Source Code to Execution
® Create Your Own execve

e Security Implications:

* |dentifying and Addressing Vulnerabilities
® Techniques for Secure Programming

Outline 1/34

Excutable Linkable File
(ELF)

Making the Program Recognizable to the Machine

Example: Minimum HelloWorld

$ 1s -1

$ file helloworld

$ cat helloworld

$ cat helloworld | hexdump | less

Magic Number: 0x 457f 464c

What is an Executable File?

Before Learning Computer Security:
e "That thing you double-click to open a window”

After Learning Computer Security:
e An object in the operating system (a file)
¢ Asequence of bytes (we can edit it as characters)

e A data structure that describes the initial state of a state
machine (Better understand attacks like buffer overflows,
format string vulnerabilities, heap overflows, integer
overflows, and other related attacks).

ELF

ELF is A Data Structure

The computer is a machine.
Everything in the computer is a state machine.
Executable files describes the initial state of a process.
e Each line of assembly code represents a state transition.
e When using the system call execve, the initial state of the
program, as defined in the ELF, is fixed.
e There is a document that explicitly defines what the initial state
of the program should be.

RTFM: Read The "Fine” Manual

Key Manuals for This Lesson:

e System V ABI: Defines the System V Application Binary
Interface for the AMD64 architecture, providing essential
specifications for binary compatibility.

: a}\" v
e The answer of in-class quiz 2 é

e System V ABI (AMD64 Architecture Processor Supplement)
® Section 3.4 Process Initialization
® Figure 3.9 Initial Process Stack
® Specifies certain parts of registers and memory.
® Other states (mainly in memory) are determined by the
executable file.

e Refspecs: Additional reference specifications to deepen
understanding of Linux-based systems.

e Linux Refspecs

https://cs61.seas.harvard.edu/site/pdf/x86-64-abi-20210928.pdf
https://refspecs.linuxbase.org/

What Exactly is the State of a Process?

The State of a Process:
e The process state is composed of:

®* Memory: Describes the program’s address space and its
contents.

® Registers: Includes general-purpose registers and
program-specific configurations.

However,

e Figure 3.9 (System V ABI) shows the initial process stack, but
this is not part of the executable file itself.

e |t is the responsibility of the operating system to construct the
initial stack based on the ABI specification.

What Does the ELF Actually Define?

ELF and Memory Data Structures:

e The ELF defines how data is structured in memory, including
both fixed and dynamic components.

e These structures are binary and can be complex to interpret
directly.

e Specialized tools like readelf and ob jdump are essential for
reading and understanding these memory structures.

Binutils - Binary Utilities

GNU Binutils: Essential Tools for Executable Files

e Creating Executable Files:
® 1d (Linker): Combines object files into a single executable.
®* as (Assembler): Translates assembly code into machine code.

® ar and ranlib : Manage static libraries.
e Analyzing Executable Files:

® objcopy, objdump, readelf :Inspect and modify
executables, often used in computer systems basics.

® addr2line: Maps addresses to line numbers for debugging.

®* size, nm: Display size information and symbol tables.

Learn More: GNU Binutils Official Page
So, I can use the command size to determine the smallest 'Hello
World' program from each student’'s HW2 and give extra credit to

: \’/’ v
the one with the smallest.

ELF

https://www.gnu.org/software/binutils/

Why Can We See All This Information?

Debugging Information Added During Compilation:

e When we compile with debug flags, the compiler includes extra
information in the binary.

e This information allows tools like ocbjdump and addr2line to
map assembly code back to the original source code.

Example Command:

e Using gcc —g -S hello.c generates assembly code with
debugging information.

e This enables us to see additional sections in the assembly
output, including variable names, line numbers, and other
metadata.

Standard of Debugging Information

Mapping Machine State to “C World” State:

e The DWARF Debugging Standard (dwarfstd.org) defines an
instruction set, DW_0OP_XX¥, that is Turing Complete.

e This instruction set can perform “arbitrary computations” to
map the current machine state back to the C language state.

Challenges and Limitations:

e Limited Support for Modern Languages: Advanced features
(e.g., C++ templates) are not fully supported.

e Complexity of Programming Languages: As languages
evolve, it becomes increasingly challenging to accurately map
machine states to source code.

e Compiler Limitations: Compilers may not always produce
perfect debug information, leading to issues like:

® Frustrating instances of variables being <optimized out>
® Incorrect or incomplete debugging information

ELF

https://dwarfstd.org/

Reverse Engineering

e Provides insights into commercial software without access to
the original source code.
¢ Challenges:
® No Debug Information
® Stripped Symbols
® Opaque Instruction Sequences
* Techniques:
® Analysts use specialized tools (e.g., objdump, IDA Pro, Ghidra)
to disassemble and analyze the instruction sequences.
® Techniques like pattern recognition, control flow analysis, and
heuristic methods help infer program functionality.

Funny Little Executable

Let’s create our own ELF file from scratch.

Outline Executable Files and B

Why is learning ELF so challenging?

No difference for you!

$ readelf -a helloworld
$ cat helloworld

Reflection:
e ELFis not a human-friendly "state machine data structure.”

e For the sake of performance, it sacrifices readability, violating
the principle of "information locality.”

Almost Like Reading a Core Dump:
e "Hell's joke: Today's core dump is an ELF file.”

Magnetic Core Memory

e The origin of "Segmentation
fault (core dumped)”

¢ Non-volatile memory!

Magnetic core memory, storing data by the magnetization
direction of tiny ferrite cores. Each core represents a single
bit, retaining data even when powered off.

But It Wasn't Always Like This

UNIX a.out "assembler output”
e Arelatively simple data structure
e Describes the initial state (structure) of the address space

e Once the data is loaded into the process and the pointer is set
to the entry point, the program can start running.

struct exec {
uint32_t a_midmag; // Machine ID & Magic
uint32_t a_text; // Text segment size
uint32_t a_data; // Data segment size
uint32_t a_bss; // BSS segment size
uint32_t a_syms; // Symbol table size
uint32_t a_entry; // Entry point
uint32_t a_trsize; // Text reloc table size
uint32_t a_drsize; // Data reloc table size
i

Why Was It Replaced?
e Limited functionality:

® No support for dynamic linking, debugging information (why
gdb works), thread-local storage, etc.

e Naturally phased out due to increasing demands.

DIY

https://man.freebsd.org/cgi/man.cgi?a.out(5)

In Other Words...

The More Features Supported, the Less Human-Friendly:
e Hearing terms like "program header,” "section header” feels
overwhelming for the human brain.
e Contains cryptic values like R X86_64 32, R X86_64 PLT32.

e A massive amount of “pointers” (essentially unreadable to
humans).
® LLM can help us read them, but it's still far from easy!

A More Human-Friendly Approach:
e Simpler and flatter design is easier to understand.
e All necessary information is immediately visible.

A Chance to Redesign

Design Your Own FLE:
e FLE:

* Funny (Fluffy) Linkable Executable
® Project 1: Friendly Learning Executable (my favorite!)

Core Design Principles:

e Make everything human-readable (all information should be at
the top).

e Revisit the core concepts of linking and loading: code, symbols,
relocations.

¢ How would you design it?

Let's use emojis!

Code EB Symbols i and Relocations ?
By combining these three elements, we can create an executable

file!

m: ff ff ff ff ff ff ff ff

. ff ff ff ff ff ff ff ff

. _start

: 48 ¢7 c0 2a 00 00 00

: 48 c7¢72a 000000

. Of 05 ff ff ff ff ff ff

. ff ff ff ff ff ff ff ff

: i32(unresolved_symbol - 0x4 -)

e You can use text to hack the excutable file.

v EEBEEME

e You can also get the debugging information.

Implementation of FLE Binutils

Implemented Tools:
e exec (loader)

® objdump/readfle/nm (display)
e cc/as (compiler/assembler)
e 1d (linker)
Most Components Reuse GNU Binutils:
® clf to_fle

Step 1: Preprocessing and Compilation

Source Code (.c) — Intermediate Code (.i):
e Ctrl-C & Ctrl-V (#include)
e GCC first performs a preprocessing step without macros

gcc —-E foo.c | less
[]

e String substitution
e Today: We use macros
Intermediate Code (.i) — Assembly Code (.s):

e Translation from "high-level state machine” to "low-level state
machine”

¢ Final output: annotated instruction sequences

Generating Executable Files (2): Compilation

Assembly Code (.s) — Object File (.0):
e File =sections (.text, .data, .rodata.strl.1,..)

® For ELF, each section has its own permissions and stores
corresponding information.
® Three key elements in a section:
® Code: Sequence of instructions.
* Symbols: Marks the location of “current.”
* Relocations: Values that cannot be determined yet (resolved
during linking).

Quick Quiz: What is the difference between global and local
symbols in ELF? Are there other types of symbols?

Generating Executable Files (3): (Static) Linking

Multiple Object Files (.0) — Executable File (a.out):
e Combine all sections:
® Merge code from .text, .data, .bss, etc.
® Flatten sections into a linear sequence.

® Determine the locations of all symbols.
® Resolve all relocations.

e Produce a single executable file:
® A description of the program's initial memory state.

FLE Program: Loading

Load the "byte sequence” into memory:
e That's all there is to do.
e Then set the correct PC (program counter) and start running.

mem = mmap.mmap (
fileno=-1, length=len (bs),
prot=mmap.PROT_READ | mmap.PROT_WRITE | mmap.PROT_EXEC

’
flags=mmap.MAP_PRIVATE | mmap.MAP_ANONYMOUS,

)

mem.write (bs)

mem. flush ()

call_pointer (mem, fle[’symbols’][’_start’])

Shebang

EXECVE

#! - Shebang

Easter Egg:
e Our FLE files can be executed directly:

#!/./exec

The "magic” of #! in UNIX:
e Example: file.bin

#!A B C

* The operating system executes:

execve (A, ["A", "B C", "file.bin"], envp)

EXECVE 25/34

Example: Executable Files on an Operating System

Requirements for an Executable File:
e Must have execution ('X’) permission.

e Must be in a format that the loader can recognize as
executable.

Example Commands and Output:

$./a.c
bash: ./a.c: Permission denied
$./a.c
bash: ./a.c: Permission denied

$ chmod -x a.out && ./a.out
bash: The file ’./a.out’ is not executable by this user

$ chmod +x a.c && ./a.c

Failed to execute process ’./a.c’. Reason:

exec: Exec format error

The file ’./a.c’ is marked as an executable but could not
be run by the operating system.

EXECVE 26/34

Who Decides If a File is Executable?

The Operating System (OS Code - execve) Determines
Executability:

e The OS, through execve, decides whether a file can be
executed.

Try It Out:

e Use strace to trace execve calls and observe execution
failures.

® strace ./a.c

® Without execute permission on a.c: execve returns -1, EACCES

® With execute permission but incorrect format on a.c: execve
returns -1, ENOEXEC

She-bang (#!/path/to/interpreter):

e The She-bang (#!) allows specifying an interpreter for a script
or executable.

e She-bang effectively performs a “parameter swap” in execve,
launching the specified interpreter to execute the file.

EXECVE 27134

Example: Running Python Code in a C File

e Save the Following Code as helloworld.c:

#! /usr/bin/python3
print ("Hello_World!")

¢ Give the file execute permission:

‘S chmod +x helloworld.c

* Now, you can directly run the helloworld.c file to execute
the Python code:

$./helloworld.c
Hello World!

EXECVE 28/34

Static Linking and Loading

EXECVE

Why ELF When We Have FLE?

If you want to build Chrome (2017):
2 GiB binary (with debug info)
17,000 files

1,800,000 sections

6,300,000 symbols

13,000,000 relocations

C++ Name Mangling:
e Example: ZNK8KxVectorI6D1TypejEixE] IS:

KxVector<D1lType, unsigned int>::operator[] (uns:

e (It seems impossible to skip pointers.)

EXECVE 30/34

ELF Linking

Built upon FLE: readelf -a provides detailed insights!
Sections: More sections; more flags

[Nr] Name Type Address Offset
Size EntSize Flags Link Info Align
[5] .tdata PROGBITS 0000000000000000 0000000c
00000004 00000000 WAT 0 0 4

Relocations: Similar but more powerful

Offset Info Type Name + A
0000000000000016 0000000000000004 R_X86_64_GOTPCREL x
0000000000000020 0000000000000006 R_X86_64_TPOFF32 y -

extern __thread int x;
extern __thread int vy;

EXECVE 31/34

Loading: ELF vs. FLE

FLE Loader: Does Only One Thing
e Copies a single byte sequence into the address space:
® Grants read, write, and execute permissions.

® Then jumps to _start for execution.

ELF: Not Much More
e Copies multiple segments into the address space:
® Separately grants read, write, and execute permissions.

e Then jumps to the specified entry point (default: _start) for
execution.

EXECVE 32/34

Loading: ELF vs. FLE (cont'd)

They Are Both Data Structures

e Example: ELF is a "binary data structure.”
® readelf -1 describes how itisloaded:
e Offset: Segment’s offset in the file.
® VirtAddr: Virtual address where the segment is loaded in
memory.
® PhysAddr: Physical address (rarely used).
* FileSize: Number of bytes in the segment in the file.
°* MemSize: Number of bytes in the segment in memory (may
exceed file size).
® Flags: Permissions, such as RWE (Read, Write, Execute).
e Align: Alignment of the segment’s virtual address.

EXECVE 33/34

Understanding Executable Files and Buffer Overflow

e What is an Executable File?

® An executable file is a data structure (a sequence of bytes) that
describes the initial state of a state machine.

® The loader transfers this "“initial state” into the operating system.

e |tis difficult to read because it was never designed for human
readability.

e |t helps us understanding the buffer overflow:

* Why can we use gdb to compute stack offsets that helps analyze
function call stack structures?

® Observing local variables, return addresses, and how an
overflow can overwrite the return address.

® Redirecting execution to malicious code (e.g., shellcode) reveals
how control flow is hijacked.

® This process provides insight into program execution, stack
management, and security vulnerabilities.

Executable Files and Buffer Overflow 34/34

	Outline
	ELF
	DIY
	EXECVE
	EXECVE
	Executable Files and Buffer Overflow

