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What is buffer overflow
Understanding the stack layout
Vulnerable code
Challenges in exploitation
Shellcode
Countermeasures
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What is a buffer overflow
• An anomaly where a program, while writing data to a buffer, overruns the buffer's boundary 

and overwrites adjacent memory locations.
• Buffer overflows can be stack-based or heap-based

Common program sections: text, initialized/uninitialized data, stack, heap

Targets of buffer overflows:
• Control data: function pointers, return addresses, virtual function table (vtable)
• Pointers: to further manipulate memory (e.g., vtable pointer)
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Extremely common bug in C/C++ programs.
• First major exploit: 1988 Internet Worm. fingerd

Source: NVD/CVE
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C++ uses vtable to implement virtual functions

After overflow of buf to overwrite vtable
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Understand the Stack Layout
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C pushes arguments from right to left, why?



9



10



Computer Security: A Hands-on Approach (Fall 2020)

Buffer Overflow: An Example
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Reading 300 bytes of data from badfile
• badfile is created by the user and its contents 

are under his control

Storing the file contents into the str buffer
Calling foo function with str as an argument.
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Overwriting return address with an address pointing to
• Invalid instructions ➔ exceptions (seg fault)
• Non-existing address ➔ exceptions
• Attacker’s code ➔ executing malicious code (control-flow hijacking)
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Turn off address randomization
• % sudo sysctl -w kernel.randomize_va_space=0

Compile set-uid root version of stack.c
• % gcc -g —o stack -z execstack -fno-stack-protector stack.c
• % sudo chown root stack
• % sudo chmod 4755 stack
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Task A : Find the offset distance between the base of buffer and return address
• How many bytes to write in order to overflow the return address

Task B : Find the address to place the shell-code
• We can put the malicious code in the badfile, which will be copied to the buffer
• Overwrite the return address w/ this location



18

Set breakpoint at bof and run it
• (gdb) b bof
• (gdb) run

Find the buffer address (buffer is only accessible if compiled w/-g)
• (gdb) p &buffer

Find the current frame pointer, return address@ebp + 4
• (gdb) p $ebp

Calculate distance
• (gdb) p (char*)$2 – (char*)$1

Exit (quit)
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Therefore, the distance is 108 + 4 = 112
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Use a badfile with known pattern
• e.g., a byte stream of 01,02,03,04,05,06,07,08,09…. (in binary)

Enable coredump
• ulimit -c unlimited

Run the program with the badfile ➔ exception
Use gdb to open the coredump, get $eip
• The pattern in eip gives the offset
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Disassemble the program and get the offset from instructions
• objdump -d stack
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When ASLR is disabled, programs are loaded at the same location
Use a program similar to the target to print the frame address
• This frame address is close to real frame address (reduce the space to guess the correct one)
• It is easy to calculate the buffer address from the frame address
• We can put our malicious code in the badfile (in the buffer)
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Obtain the exact buffer address from the coredump file
• $esp is still valid when exception happens, pointing to the return addr
• Read the stack from $esp

Where is the buffer address on the stack?
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Fill badfile with NOP instructions and place malicious code at the end of buffer
• NOP: instructions that does nothing
• To increase the chances of jumping to the correct address of the malicious code
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1. Obtained from Task A - offset of the return address from the base of the buffer
2. Obtained from Task B - approximate address of the shell-code
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Vulnerable program uses strcpy to copy the buffer
• What’s the implication?

Strcpy will stop copying the rest of the input if met a zero
• The return address and shell-code in badfile cannot contain zeros

e.g., 0xbffff188 + 0x78 = 0xbffff200, the last byte contains zero leading to end copy.
• How to address this problem?
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Compiling the vulnerable code with all the countermeasures disabled

Compiling the exploit code to generate the badfile.
Executing the exploit code and stack code.
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On Ubuntu16.04, /bin/sh points to /bin/dash, which has a countermeasure
• It drops privileges when being executed inside a setuid process

Point /bin/sh to another shell (simplify the attack)

Change the shellcode (defeat this countermeasure)

Other methods to defeat the countermeasure will be discussed later
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Shellcode: the malicious code used by attackers to gain control of the system
• Originally to spawn a shell, but can do anything
• Challenges:

How to load the shellcode, zero bytes in the shellcode

Example: (compile it to binary and extract the binary instructions)
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Assembly code (machine instructions) for launching a shell.
Goal: use execve(“/bin/sh”, argv, 0) to spawn a shell
Registers used:
• eax = 0x0000000b; syscall # of execve
• ebx = address to “/bin/sh”
• ecx = address of the argument array.
• argv[0] = the address of “/bin/sh”
• argv[1] = 0; no more arguments
• edx = 0; no environment variables are passed
• int 0x80; invoke execve()
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Developer approaches:
• Use safer functions like strncpy(), strncat() etc, 
• safer dynamic link libraries that check the length of the data before copying.

OS approaches:
• ASLR (Address Space Layout Randomization)

Compiler approaches:
• Stack-Guard

Hardware approaches:
• Non-Executable Stack 
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To succeed, attackers need to know the address of various targets
ASLR: randomize memory layout to make it harder for attackers to guess addresses
• Most current systems support randomize stack, heap, and data…
• The program must be compiled as position-independent Executable

Difficult to guess %ebp address and address of the malicious code 

Difficult to guess the stack address in the memory

Every time the code is loaded in the memory, stack address changes
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Brute-force attacks
• Try many times, eventually get lucky

Use ROP to exploit non-randomized memory (code/data)
• Code (program or libraries) that is NOT compiled as PIE
• Systems that have ASLR off by default for “compatibility”

Exploit information disclosure bugs to reveal addresses
• ASLR only randomizes code/data segment bases
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Turn on address randomization
• % sudo sysctl -w kernel.randomize_va_space=2

Compile set-uid root version of stack.c
• % gcc -o stack -z execstack -fno-stack-protector stack.c
• % sudo chown root stack
• % sudo chmod 4755 stack
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Defeat ASLR by attack the vulnerable code in an infinite loop
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Got the shell after running for about 19 minutes on a 32-bit Linux machine
• How long will it take on a 64-bit Linux?
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Function prologue embeds a canary word between return address and locals
Function epilogue checks canary before it returns

Wrong canary ➔ overflow
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What is %gs:20 ? 
• gs: a segment register pointing to memory
• Each thread has its own gs segment
• The same code %gs:20 actually accesses different memory
• %gs:20 — canary in the thread-local storage
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Shellcode is placed in the data area (stack/heap)
DEP: prevent the data to be executed and code to be overwritten
CPU provides the NX bit in the page table to mark a page to be non-executable
• Similarly, Supervisor Mode Access Prevention prevent the kernel from executing the user 

memory (Why?)

DEP can be defeated by reusing existing code (code-reuse attack)
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They turn setuid process into a non-setuid process
• They set the effective user ID to the real user ID, dropping the privilege

Idea: before running them, we set the real user ID to 0
• Invoke setuid(0)
• We can do this at the beginning of the shellcode
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Still a long way to go!

Pwn2own 2020:
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Buffer overflow is a common security flaw
Buffer overflows can happen on the stack or in the heap
Exploit buffer overflow to run injected shellcode
Defend against the attack
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