
Computer Security: A Hands-on Approach (Fall 2020)

Lecture 2: Buffer Overflow

Zhi Wang
Florida State University

x7d78smmj63jmdx6wmjy8.l;oaAy
CIS 5370

x7d78smmj63jmdx6wmjy8.l;oaAy

What is buffer overflow
Understanding the stack layout
Vulnerable code
Challenges in exploitation
Shellcode
Countermeasures

3

What is a buffer overflow
• An anomaly where a program, while writing data to a buffer, overruns the buffer's boundary

and overwrites adjacent memory locations.
• Buffer overflows can be stack-based or heap-based

Common program sections: text, initialized/uninitialized data, stack, heap

Targets of buffer overflows:
• Control data: function pointers, return addresses, virtual function table (vtable)
• Pointers: to further manipulate memory (e.g., vtable pointer)

4

Extremely common bug in C/C++ programs.
• First major exploit: 1988 Internet Worm. fingerd

Source: NVD/CVE

5

C++ uses vtable to implement virtual functions

After overflow of buf to overwrite vtable

Computer Security: A Hands-on Approach (Fall 2020)

Understand the Stack Layout

6

x7d78smmj63jmdx6wmjy8.l;oaAy

7

8

C pushes arguments from right to left, why?

9

10

Computer Security: A Hands-on Approach (Fall 2020)

Buffer Overflow: An Example

x7d78smmj63jmdx6wmjy8.l;oaAy

12

Reading 300 bytes of data from badfile
• badfile is created by the user and its contents

are under his control

Storing the file contents into the str buffer
Calling foo function with str as an argument.

13

14

Overwriting return address with an address pointing to
• Invalid instructions ➔ exceptions (seg fault)
• Non-existing address ➔ exceptions
• Attacker’s code ➔ executing malicious code (control-flow hijacking)

15

16

Turn off address randomization
• % sudo sysctl -w kernel.randomize_va_space=0

Compile set-uid root version of stack.c
• % gcc -g —o stack -z execstack -fno-stack-protector stack.c
• % sudo chown root stack
• % sudo chmod 4755 stack

17

Task A : Find the offset distance between the base of buffer and return address
• How many bytes to write in order to overflow the return address

Task B : Find the address to place the shell-code
• We can put the malicious code in the badfile, which will be copied to the buffer
• Overwrite the return address w/ this location

18

Set breakpoint at bof and run it
• (gdb) b bof
• (gdb) run

Find the buffer address (buffer is only accessible if compiled w/-g)
• (gdb) p &buffer

Find the current frame pointer, return address@ebp + 4
• (gdb) p $ebp

Calculate distance
• (gdb) p (char*)$2 – (char*)$1

Exit (quit)

19

Therefore, the distance is 108 + 4 = 112

20

Use a badfile with known pattern
• e.g., a byte stream of 01,02,03,04,05,06,07,08,09…. (in binary)

Enable coredump
• ulimit -c unlimited

Run the program with the badfile ➔ exception
Use gdb to open the coredump, get $eip
• The pattern in eip gives the offset

21

Disassemble the program and get the offset from instructions
• objdump -d stack

22

When ASLR is disabled, programs are loaded at the same location
Use a program similar to the target to print the frame address
• This frame address is close to real frame address (reduce the space to guess the correct one)
• It is easy to calculate the buffer address from the frame address
• We can put our malicious code in the badfile (in the buffer)

23

Obtain the exact buffer address from the coredump file
• $esp is still valid when exception happens, pointing to the return addr
• Read the stack from $esp

Where is the buffer address on the stack?

24

Fill badfile with NOP instructions and place malicious code at the end of buffer
• NOP: instructions that does nothing
• To increase the chances of jumping to the correct address of the malicious code

25

26

1. Obtained from Task A - offset of the return address from the base of the buffer
2. Obtained from Task B - approximate address of the shell-code

27

Vulnerable program uses strcpy to copy the buffer
• What’s the implication?

Strcpy will stop copying the rest of the input if met a zero
• The return address and shell-code in badfile cannot contain zeros

e.g., 0xbffff188 + 0x78 = 0xbffff200, the last byte contains zero leading to end copy.
• How to address this problem?

28

Compiling the vulnerable code with all the countermeasures disabled

Compiling the exploit code to generate the badfile.
Executing the exploit code and stack code.

29

On Ubuntu16.04, /bin/sh points to /bin/dash, which has a countermeasure
• It drops privileges when being executed inside a setuid process

Point /bin/sh to another shell (simplify the attack)

Change the shellcode (defeat this countermeasure)

Other methods to defeat the countermeasure will be discussed later

30

Shellcode: the malicious code used by attackers to gain control of the system
• Originally to spawn a shell, but can do anything
• Challenges:

How to load the shellcode, zero bytes in the shellcode

Example: (compile it to binary and extract the binary instructions)

31

32

Assembly code (machine instructions) for launching a shell.
Goal: use execve(“/bin/sh”, argv, 0) to spawn a shell
Registers used:
• eax = 0x0000000b; syscall # of execve
• ebx = address to “/bin/sh”
• ecx = address of the argument array.
• argv[0] = the address of “/bin/sh”
• argv[1] = 0; no more arguments
• edx = 0; no environment variables are passed
• int 0x80; invoke execve()

33

34

35

Developer approaches:
• Use safer functions like strncpy(), strncat() etc,
• safer dynamic link libraries that check the length of the data before copying.

OS approaches:
• ASLR (Address Space Layout Randomization)

Compiler approaches:
• Stack-Guard

Hardware approaches:
• Non-Executable Stack

36

To succeed, attackers need to know the address of various targets
ASLR: randomize memory layout to make it harder for attackers to guess addresses
• Most current systems support randomize stack, heap, and data…
• The program must be compiled as position-independent Executable

Difficult to guess %ebp address and address of the malicious code

Difficult to guess the stack address in the memory

Every time the code is loaded in the memory, stack address changes

37

38

39

Brute-force attacks
• Try many times, eventually get lucky

Use ROP to exploit non-randomized memory (code/data)
• Code (program or libraries) that is NOT compiled as PIE
• Systems that have ASLR off by default for “compatibility”

Exploit information disclosure bugs to reveal addresses
• ASLR only randomizes code/data segment bases

40

Turn on address randomization
• % sudo sysctl -w kernel.randomize_va_space=2

Compile set-uid root version of stack.c
• % gcc -o stack -z execstack -fno-stack-protector stack.c
• % sudo chown root stack
• % sudo chmod 4755 stack

41

Defeat ASLR by attack the vulnerable code in an infinite loop

42

Got the shell after running for about 19 minutes on a 32-bit Linux machine
• How long will it take on a 64-bit Linux?

43

Function prologue embeds a canary word between return address and locals
Function epilogue checks canary before it returns

Wrong canary ➔ overflow

44

What is %gs:20 ?
• gs: a segment register pointing to memory
• Each thread has its own gs segment
• The same code %gs:20 actually accesses different memory
• %gs:20 — canary in the thread-local storage

45

Shellcode is placed in the data area (stack/heap)
DEP: prevent the data to be executed and code to be overwritten
CPU provides the NX bit in the page table to mark a page to be non-executable
• Similarly, Supervisor Mode Access Prevention prevent the kernel from executing the user

memory (Why?)

DEP can be defeated by reusing existing code (code-reuse attack)

46

They turn setuid process into a non-setuid process
• They set the effective user ID to the real user ID, dropping the privilege

Idea: before running them, we set the real user ID to 0
• Invoke setuid(0)
• We can do this at the beginning of the shellcode

47

Still a long way to go!

Pwn2own 2020:

48

Buffer overflow is a common security flaw
Buffer overflows can happen on the stack or in the heap
Exploit buffer overflow to run injected shellcode
Defend against the attack

	Lecture 2: Buffer Overflow
	Outline
	Buffer Overflows
	Buffer Overflows
	Example: Corrupting vtable
	Understand the Stack Layout
	Program Memory Stack
	Function Arguments on Stack
	Function Call Stack
	Stack Layout for Function Call Chain
	Buffer Overflow: An Example
	Vulnerable Program
	Vulnerable Program
	Consequences of Buffer Overflow
	Hijacking Control Flow
	Environment Setup
	Create Malicious Input (badfile)
	Task A : Find Offset
	Task A: Find Offset
	Task A : Find Offset – Method 2
	Task A: Find Offset – Method 3
	Task B : Locate the Buffer (shell-code)
	Task B : Locate the Buffer (shell-code) - 2
	Task B : NOP Sled
	Structure of badfile
	Construct Badfile
	Strcpy Hazard
	Execution Results
	A Note on Countermeasure
	Shellcode
	Linux Syscall Dispatch
	Shellcode
	Shellcode
	Shellcode
	Countermeasures
	Address Space Layout Randomization
	ASLR: Test Example
	ASLR Working
	Bypassing ASLR
	ASLR: Brute-force
	ASLR: Brute-force
	ASLR: Brute-force
	StackGuard
	Execution w/ StackGuard
	Data Execution Prevention
	Defeating Countermeasures in bash & dash
	Am I a Hacker Now?
	Summary

