
Lecture 16: Context Switching and File Linking
Interrupts, Context Switching, Hard Links, and Symbolic Links

Xin Liu

Florida State University
xliu15@fsu.edu

CIS 5370 Computer Security
https://xinliulab.github.io/cis5370.html

mailto:xliu15j@fsu.edu
https://xinliulab.github.io/cis5370.html


Processor and Interrupts

The Ideal Processor
• A machine that executes instructions unconditionally.
for (day = TODAY; day != FOREVER; day++) {

say("I love you\n");
}

The Real Processor is NOT ”Unconditionally Executing
Instructions”
• It ”cares” and responds to external interrupts.
• If you fall into an infinite loop in the library...

• A friendly security guard will ”interrupt” you.

Interrupt Context Switching Directory API 1 / 14



Interrupt = A Single Wire

• ”Telling the processor: Stop, something has happened!”
• ”The rest is up to the processor.”

Interrupt Context Switching Directory API 2 / 14



Processor Interrupt Behavior

If the Processor Interrupts are Enabled
• x86 Family (CISC, a legacy of history; a nightmare for
processor designers)

• Reads interrupt vector number n via the interrupt controller.
• Saves CS, EIP, EFLAGS, SS, and ESP onto the stack.
• Jumps to the ”Gate” in IDT[n].
• A data structure that describes privilege-level switching
and long jumps.

• RISC-V (M-Mode, Direct Exception Mode)
• Checks whether this interrupt should be masked.
• Jumps: PC = (mtvec & ˜0xF)
• Updates: mcause.Interrupt = 1

Interrupt Context Switching Directory API 3 / 14



Another Way to Understand Interrupts

Forcibly ”Injected” syscalls
• Interrupt

• Saves: mepc = PC
• Jumps: PC = (mtvec & ˜0xF)
• Updates: mcause.Interrupt = 1

• System Call (ecall)
• Saves: mepc = PC
• Jumps: PC = (mtvec & ˜0xF)
• Updates: mcause.Ecall = 1

”No matter what you are doing right now, go execute the
system core code!”

Interrupt Context Switching Directory API 4 / 14



Interrupts Grant OS ”Supremacy”

Operating System Kernel (Code)
• Can enable and disable interrupts at will.

User Applications
• Sorry, no direct control over interrupts.

• You can inspect the flags register (FL IF) in gdb.
• CLI - Clear Interrupt Flag

• #GP(0) occurs if CPL is greater than IOPL and less than 3.
• Try using: asm volatile ("cli");

• Regardless of what code you write, it will always be interrupted.

Interrupt Context Switching Directory API 5 / 14



Assume an Interrupt Occurs
What Should the Operating System Code Do?
• mov (kernel rsp), %rsp

• This can be fatal.
• The process (state machine) state will be lost forever.

First: Save the State Machine (Registers)
• Preserve control over memory and data.
• Save register states to physical memory for later restoration.

Then: Execute the Operating System Code
• C code can freely use registers.
• The OS code selects a state machine for return.
• Restore register states from physical memory.
• Execute sysret (iret).

This is the most elegant pieces of code in operating systems.

Interrupt Context Switching Directory API 6 / 14



Implementing Context Switching

Operating System Implementation Tricks
• Set up a ”current context”.
• Save and restore register states.

• AbstractMachine already helps you obtain registers.

Context *on_interrupt(Event ev, Context *ctx) {
// Save context.
current->context = *ctx;

// Thread schedule.
current = current->next;

// Restore current thread’s context.
return &current->context;

}

Interrupt Context Switching Directory API 7 / 14



Directory API (System Calls)

Interrupt Context Switching Directory API 8 / 14



Directory Management: Create/Delete/Traverse

This is straightforward:
• mkdir

• Creates a directory
• Allows setting access permissions

• rmdir
• Deletes an empty directory
• No system call for ”recursive delete”

• (If achievable at the application level, it is not implemented at the
OS level)

• rm -rf traverses directories, deleting each item (try strace)
• getdents

• Returns count number of directory entries (used by ls, find,
tree)

• Dot-prefixed entries are returned by the system call, but ls
does not display them by default

Interrupt Context Switching Directory API 9 / 14



More User-Friendly Directory Access

Appropriate API + Programming Language
• Globbing
• This is a user-friendly approach

• C++ filesystem API is quite difficult to use

Interrupt Context Switching Directory API 10 / 14



Hard Links

Requirements: The system may have multiple versions of the
same library.
• Examples: libc-2.27.so, libc-2.26.so, ...
• Also requires a ”current version of libc”

• Programs need to link to libc.so.6 to avoid duplicating the
file.

Hard Link: Allows a file to be referenced by multiple directory
entries.
• Directories only store pointers to the file data.
• Limitations:

• Cannot link directories
• Cannot link across file systems

Most UNIX file systems use hard links for files (check with ls -i).
• System call to delete a link is unlink (reference count).

Interrupt Context Switching Directory API 11 / 14



Symbolic Links

Symbolic Link: Stores a ”jump pointer” in a file.
• Symbolic links are also files.

• When referencing this file, it points to another file.
• Stores the absolute/relative path of another file as text in the

file.
• Can link across file systems, can link directories, etc.

• Similar to a ”shortcut.”
• It doesn’t matter if the linked target currently exists.
• Examples:

• ˜/usb⇒ /media/xinliu-usb
• ˜/Desktop⇒ /mnt/c/Users/xinliu/Desktop (WSL)

ln -s to create symbolic links.
• symlink system call.

Interrupt Context Switching Directory API 12 / 14



Symbolic Links: Can Be Used to Make Galgames

(In the previous era, a huge number of games looked like this)

Interrupt Context Switching Directory API 13 / 14



Takeaways

System call instructions are a special type of ”long jump”
• The jump target is pre-configured by the OS and cannot be
controlled by applications.

Processor interrupts also trigger long jumps to the OS kernel
• The OS kernel preserves the process state machine:

• Memory pages remain unchanged.
• Carefully designed code ensures all registers are safely stored in

memory.
At this moment, the system is in a state where:
• All programs are suspended, and only OS code is executing.
• The OS selectively schedules the next register context onto the

CPU to achieve context switching.

Interrupt Context Switching Directory API 14 / 14


	Interrupt
	Context Switching
	Directory API

