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Spinlocks

Spinlocks

e Aspinlock is a simple lock where a thread constantly checks for
lock availability.

* Imagine a single key to a critical section. The first thread to
acquire the key can enter.

e Hardware instructions ensure atomic key exchange.
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Understanding Spinlocks Thoroughly

The single atomic instruction (xchg) ensures no race condition.

// 0 means unlocked, 1 means locked
int lock = 0;

void acquire_lock(int *lock) {
while (*lock = 0) {}
*lock = 1;

void release_lock(int *lock) {
*lock = 0;
}

void *foo(void *arg) {
acquire_lock(&lock);
// Critical section: Do work here ...
release_lock(&lock);
return NULL;

// 0 means unlocked, 1 means locked
int lock = 0;

int xchg(int *addr, int newval) {
int result;
asm volatile (
"lock xchg %0, %1"
. "+m"” (*addr), "=a" (result)
:"1" (newval)
sec”
)
return result;

}

void acquire_lock(int *lock) {
while (xchg(lock, 1)) {}

}

void release_lock(int *lock) {
xchg(lock, 0);
}

void *foo(void *arg) {
acquire_lock(&lock);
// Critical section: Do work here ...
release_lock(&lock);
return NULL;

Spinlock




Rules for Acquiring a Lock

e Grab first, verify later: Don't bother checking if the lock is
free. Just grab it and verify its status later.

e Be fast: Grab that lock as quickly as possible before anyone
else does.
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Spinlocks

Spinlocks
e Aspinlock is a simple lock where a thread constantly checks for
lock availability.

* Imagine a single key to a critical section. The first thread to
acquire the key can enter.

e Hardware instructions ensure atomic key exchange.

Performance Issue

e Spinlocks can cause inefficiency, especially if many threads
compete for the same lock, leading to frequent context
switches (Grab first, verify later).

e If a thread holding the lock is swapped out, all other threads
continue busy-waiting, wasting CPU resources, because the
CPU still considers them active (either in the Running or Ready
to Run state).
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Mutexes and Futexes

e The lock is managed by the OS kernel.

e When a thread attempts to acquire a mutex that is already
locked, the OS puts the thread to sleep (blocked state) instead
of busy-waiting.

e The kernel wakes up the thread when the lock becomes
available, preventing it from wasting CPU time while waiting
for the lock.

e Afutex is a combination of spinlocks and mutexes.

e |t starts with spinning and escalates to a kernel-based mutex
when needed.

e This hybrid approach improves performance by reducing both
busy-waiting in user space and context switches to the kernel.
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Example: Mutex with 3 Threads (Sleep and Wake-up)

@ Thread X acquires the lock first and enters the critical section.

® Thread Y and Thread Z attempt to acquire the lock but go into
a sleep (blocked state) since the lock is already held by X.

© Once X finishes and releases the lock, the OS wakes up Y,
typically following a first-come, first-served policy (FIFO) or
priority-based scheduling.

@ After Thread Y completes its critical section and releases the
lock, the OS wakes up Z, which then acquires the lock.

e The waking mechanism is managed by the OS, which monitors
the release of the lock and uses it as the signal to wake the
next waiting thread.
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The Essence of Concurrency Programming

e Collaborative relationships are a combination of Competition
Relationships and Dependency Relationships
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Competition Relationships

® |nvolves access and modification of shared resources within
threads

e When threads are independent
® The main concern is to avoid Competition Relationships
® Use synchronization mechanisms like Spinlocks and Mutex
Locks
® Ensure only one thread accesses the shared resource at a time
® Avoid data inconsistency and race conditions

e Focus on safe access within threads
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Dependency Relationships

e Involves execution order and causal relationships between
threads

e When one thread must complete before another can execute
® Use mechanisms like Condition Variables and Semaphores

e Control the execution order of threads
e Satisfy logical dependency requirements

e Focus on correct coordination between threads
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Real-World Application

Core Question

e How do you coordinate multiple threads to handle tasks
efficiently in real-world systems?

Example: E-commerce Platform Order Processing System

e Order Validation: Check product inventory, user balance, and
coupon validity.

e Payment Processing: Deduct from user accounts or process
third-party payments.

e Inventory Update: Deduct product stock to prevent
overselling.

e Logistics Arrangement: Generate shipping orders and
arrange delivery.

* Notify Users: Send confirmation emails or SMS to users.
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Real-World Application (Cont.)

Challenges and Solutions

e Managing Shared Resources (Competition):
® Multiple threads updating inventory or user balances may cause

race conditions.
® Solution: Use Mutex locks to ensure only one thread modifies

shared resources at a time.
® Also, use transactions to roll back in case of failures, ensuring

data consistency.
e Managing Dependencies Between Threads (Dependency):
* Notification threads must wait until order processing is

complete.

® Solution: Use condition variables or semaphores to signal
thread progress and control execution order.

® Task queues can be used to arrange execution based on

dependencies.




Modeling Concurrent Problems

Producer-Consumer Problem

¢ A fundamental synchronization problem that allows you to
solve 99.9% of real-world concurrency issues.

Dining Philosophers Problem

* Another classic problem that demonstrates how multiple
entities share limited resources (like CPUs).
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Key Tools

Condition Variables

¢ A flexible synchronization primitive that allows threads to wait
until a specific condition is met.

Semaphores

e A more rigid mechanism used to control access to shared
resources by multiple threads.
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Producer-Consumer Problem

Producer "O” and Consumer "X"

Producer: Consumer:
e Produces an item ("O") e Consumes an item ("X")
e Waits if storage is full e Waits if no item is available
e Must be synchronized e Synchronization ensures no

with the consumer consumption before production
e We need to ensure that the symbols ("O" and "X") are printed in
a valid sequence:

e Example:
® n = 3,000XX0XX000 (valid)
® n=3,0000XxXXX, O00XxX (invalid)
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Why Producer-Consumer is Widely Representative

* |nvolves two types of threads: Producers (generate data) and
Consumers (process data)

e Producers don't overflow the buffer and consumers don't try
to consume data that's not yet available.

Challenges:
e Synchronization and mutual exclusion
e Managing dependencies and inter-thread communication
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Initial Attempt

e Ensure the condition is met using mutex locks.
e Link of Code: Producer-Consumer Example Code

e Stress Testing

¢ Link of Code: Stress Test Checker Code
e Command: ./a.out 2 | python3 pc_checker.py 2

o Bad News:

e After running the program for several hours, it actually failed!
® The issue is difficult to reproduce and to fix.
® Concurrent programming is highly challenging.

o Good News:

® The problem occurred while it was in your hands.
® Avoid taking shortcuts and always stick to the most reliable
methods.
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Condition Variables:
A Universal
Synchronization Method




The Essence of Synchronization

e The essence of synchronization is ensuring that multiple
threads or processes reach a known state at the same time,
so that they can proceed in coordination.

Example:

* Imagine two people (threads) trying to meet for dinner (a task).

e One is playing a game (task A), and the other is fixing a bug
(task B).

e They can't start dinner (synchronized task) until both have
finished their tasks (known state).

e Even if one person finishes earlier, they must wait for the
other.

Core Concept

® The core of synchronization is waiting for all necessary
conditions to be met before proceeding together.

= - = =T




Synchronization Example

e From the very beginning when you started working with
threads, you were already using synchronization.

e Can you find which part is synchronization?

pthread_t tl1, t2;

pthread_create(&tl, NULL, foo, NULL);
pthread_create(&t2, NULL, foo, NULL);

pthread_join(tl, NULL);
pthread_join(t2, NULL);

Condition Variables PAWE



Synchronization Example (Cont.)

e From the very beginning when you started working with
threads, you were already using synchronization.
e Can you find which part is synchronization?
® pthread.join ensures that the main thread waits for the other
threads to finish before continuing.
® This is a form of synchronization because it guarantees that all
threads reach a known state (completion) before the program
proceeds.

pthread_t tl1, t2;

pthread_create(&tl, NULL, foo, NULL);
pthread_create (&t2, NULL, foo, NULL);

pthread_join(tl, NULL);
pthread_join(t2, NULL);
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Problems with Initial Attempt

{

{

void xTproduce (void xarg)
while (1) {

retry:
pthread_mutex_lock (&1k) ;

if (count == n) {
pthread_mutex_unlock (&1k) ;

goto retry;
}
count++;
printf ("O");
pthread_mutex_unlock (&1k) ;

}
return NULL;

void xTconsume (void xarg)
while (1) {
retry:
pthread_mutex_lock (&1k) ;
if (count == 0) {
pthread_mutex_unlock (&1k) ;
goto retry;
}
count--;
printf ("X");
pthread_mutex_unlock (&1k) ;
}
return NULL;




Problems with Initial Attempt (Cont.)

void «Tproduce (void xarg) { void +Tconsume (void xarg) {
while (1) { while (1) {
retry: retry:
pthread_mutex_lock (&1k) ; pthread_mutex_lock (&1k) ;
if (count == n) { if (count == 0) {
pthread_mutex_unlock (&1k) ; pthread_mutex_unlock (&1k) ;
goto retry; goto retry;
} }
count++; count--;
printf ("O"); printf ("X");
pthread_mutex_unlock (&1k); pthread_mutex_unlock (&1k);
} }
return NULL; return NULL;
} }

e Busy Waiting: Both producer and consumer continuously
retry when the buffer is full or empty. This leads to a waste of
CPU resources.

e Resource Contention: Multiple threads constantly lock and
unlock the same mutex without meaningful progress when
conditions are not met, causing unnecessary contention.

e High CPU Utilization: The goto retry causes the threads to
remain in a tight loop, consuming CPU cycles even when they
should be waiting.

Condition Variables 24/ 81



Why Avoid Busy Waiting?

"Haste makes waste.”

Constant spinning and busy waiting lead to errors. Slowing down with
condition variables reduces mistakes.
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Tip 1: pthread_cond _wait

void xTproduce (void xarg) { void xTconsume (void xarg) {
while (1) { while (1) {
pthread_mutex_lock (&1k) ; pthread_mutex_lock (&1k) ;
while (count == n) { while (count == 0) {
pthread_cond_wait (¢not_full, &lk); pthread_cond_wait (&not_empty, &1k);
} }
count++; count--—;
printf ("O"); printf ("X");
pthread_cond_signal (&not_empty) ; pthread_cond_signal (&not_full);
pthread_mutex_unlock (&1k) ; pthread_mutex_unlock (&1k) ;
} }
return NULL; return NULL;
} }

® pthread_cond.wait: A thread goes to sleep and releases the
mutex while waiting for a condition (e.g., buffer not empty/full).
¢ Important: pthread_cond_-wait must be used with a mutex.
® The thread must first acquire the mutex lock before calling
pthread.cond.wait.

® pthread._cond.wait only handles waiting for a condition to be
met, it does not handle acquiring the lock.
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Tip 2: pthread _cond signal

void *Tproduce (void xarg) {

while (1) {
pthread_mutex_lock (&1k) ;
while (count == n) {

pthread_cond_wait (&not_full, &lk);

}
count++;
printf ("O");
pthread_cond_signal (&not_empty) ;
pthread_mutex_unlock (&1k) ;

}

return NULL;

}

void xTconsume (void xarg) {

while (1) {
pthread_mutex_lock (&1k) ;
while (count == 0) {

pthread_cond_wait (&not_empty, &lk);

}
count—-—;
printf ("X");
pthread_cond_signal (&not_full);
pthread_mutex_unlock (&1k) ;

}

return NULL;

}

® pthread_cond_signal: Wake up one waiting thread when the
condition is met (e.g., an item is produced or consumed).
® Which thread is woken up?
® |f multiple threads are waiting, the OS decides which thread to

wake up based on a scheduling policy, usually first-come,
first-served (FIFO) or priority-based.
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Tip 3: You can also use pthread _cond _broadcast

void xTproduce (void xarg) {

while (1) {
pthread_mutex_lock (&1k) ;
while (count == n) {

pthread_cond_wait (&not_full, &lk);

}
count++;
printf ("O");
pthread_cond_broadcast (&not_empty) ;
pthread_mutex_unlock (&1k) ;

}

return NULL;

}

void xTconsume (void xarg) {

while (1) {
pthread_mutex_lock (&1k) ;
while (count == 0) {

pthread_cond_wait (&not_empty, &lk);

}
count—-—;
printf ("X");
pthread_cond_broadcast (&not_full);
pthread_mutex_unlock (&1k) ;

}

return NULL;

}

® pthread_cond-broadcast: Wake up all waiting threads when

the condition is met.

®* When to use pthread_cond.broadcast?

® Use pthread._cond.broadcast when a global state changes that

affects all threads.
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The Most Important Tip: Two Condition Variables!

pthread_cond_t not_full = PTHREAD_COND_INITIALIZER;
pthread_cond_t not_empty = PTHREAD_COND_INITIALIZER;

¢ Avoid waking the same type of thread:
® Producers should not wake other producers, and consumers
should not wake other consumers.
® Producer thread:

® Waits on not_full when the buffer is full.
® Signals not_empty after producing an item, allowing consumers
to wake up and consume.
® Consumer thread:
® Waits on not_empty when the buffer is empty.
® Signals not_full after consuming an item, allowing producers to
wake up and produce.

¢ Link of Code: Single Condition Varaible Example Code
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Deadlock with Single Condition Variable Example

‘pthread_cond_t buffer_change = PTHREAD_COND_INITIALIZER; ‘

e Scenario:
e Buffersize(n=1)
e 2 producer threads (P1, P2) and 2 consumer threads (C1, C2)
® The buffer is empty and C1 and C2 are sleeping
® P2 s also sleeping due to the buffer being full previously.

e Process:

® P1 produces an item, filling the buffer ( count = 1), then signals
‘buffer_change’ (P1 is ready to run and not sleeping)

® The signal wakes up P2

® P2 is woken up, but finds the buffer is full, so P2 goes back to
sleep without sending any signal

® P1is scheduled by the OS, but P1 also finds the buffer is full and
goes to sleep without sending any signal

® The OS may now try to schedule C1 or C2, but they are still
sleeping, waiting for the signal that hasn't been sent

e Result:

* All threads are now in a sleeping state, resulting in deadlock
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Cause of Single Condition Variable Deadlock

e All threads rely on a signal to wake up, rather than
automatically waking when the condition becomes true.

A single condition variable may wake up the same type of
thread repeatedly.

No further signals can be sent, leading to deadlock.

Role of the Operating System:
* Manages thread scheduling and CPU time allocation
® Does not manage thread synchronization or signal passing
e Cannot wake threads
Thread Communication:
® Synchronization happens through condition variables (signals)
and mutexes
¢ Signals must be explicitly sent and received between threads
® Proper signal passing is critical for correct thread coordination
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Why Two Condition Variables Prevent Deadlock

A producer’s ‘not_empty’ signal only wakes consumers.
e A consumer’s ‘not_full’ signal only wakes producers.

At least one thread type can always proceed and change the
buffer state

Eliminates the possibility of all threads waiting at the same
time
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Limitations of Condition Variables

e Imagine a buffer with 5 slots, initially empty / full.

e If 5 producer / consumer threads want to produce / consume
'0’, a condition variable only allows one thread to produce /
consume at a time.

e But what if we want multiple threads to produce / consume 'O’
concurrently?

Semaphores 33/81



e Semaphore is a synchronization mechanism used to control
access to shared resources in concurrent systems.

e |t acts as an integer counter that tracks the availability of a
limited number of resources.

e |t can allow multiple threads to enter the critical section
simultaneously.

® However, you must ensure that there are no race conditions
when multiple threads are in the critical section. If there are no
such issues, semaphores can be used effectively.
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Semaphore Operations

e Semaphores were first introduced by Edsger W. Dijkstra in
the 1960s.

e Semaphores operate similarly to condition variables, allowing
threads to wait and be signaled based on certain conditions.

Semaphores have two primary operations:
e P operation (from Dutch proberen, meaning "to try”):

® Decreases the semaphore’s value by 1.

¢ |f the value becomes negative, the thread performing the P
operation is blocked until the semaphore’s value becomes
positive.

e V operation (from Dutch verhogen, meaning "to increment”):

® Increases the semaphore’s value by 1.

* |f there are any blocked threads, the V operation wakes up one
of them.
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Code Compariso

// Semaphores

// Condition Variables

void *Tproduce (void xarg) { void *Tproduce (void xarg)
while (1) { while (1) {
pthread_mutex_lock (&1k) ; P (&empty_sem) ;
while (count == n) {

pthread_cond_wait (&not_full, &lk);

}
count++;
printf ("O");
pthread_cond_signal (&not_empty) ;
pthread_mutex_unlock (&1k) ;

}

return NULL;

}

pthread_mutex_lock (&mutex) ;
printf ("O");
pthread_mutex_unlock (&mutex) ;

V(&full_sem);
return NULL;
}

void xTconsume (void xarg) {

void xTconsume (void xarg) {
while (1) {

while (1) {
pthread_mutex_lock (&1k) ; P (&full_sem);
while (count == 0) {

pthread_cond_wait (&not_empty, &lk);

}
count—-—;
printf ("X");
pthread_cond_signal (&not_full);
pthread_mutex_unlock (&1k) ;

}

return NULL;

}

pthread_mutex_lock (&mutex) ;
printf ("X");
pthread_mutex_unlock (&émutex) ;

V (&empty_sem) ;
}
return NULL;
}

e Link of Code: Semaphores Example Code

Semaphores /


https://github.com/xinliulab/CIS5370_Computer_Security/blob/main/lecture_code/concurrency/14_semaphore.c

Semaphores vs Condition Variables: Key Differences

e Resource Management:

® Semaphores have a built-in counter to manage resource
availability.

® Condition variables do not track resource availability. The
programmer must manage resource state manually.

e Wait/Wake Mechanism:

® Semaphores use the P (wait) and V (signal) operations to
automatically handle the blocking and unblocking of threads.

® Condition variables use pthread_cond_wait() to put a thread to
sleep and pthread_cond _ signal() or pthread_cond_broadcast()
to wake up waiting threads.

e Mutex Usage:

® Semaphores can be used with or without a mutex, allowing
multiple threads to access the critical section simultaneously
based on the semaphore's value.

® Condition variables must be used with a mutex, typically
allowing only one thread in the critical section at a time, even if
multiple threads are woken up.

Semaphores 37/81



Semaphores without Mutex

void *Tproduce (void xarg)
while (1) {
P (&empty_sem) ;
printf ("O");
V(&full_sem) ;
}

{

void xTconsume (void xarg)
while (1) {
P(&full_sem);
printf ("X");
V (&empty_sem) ;
}

{

return NULL;
} }

return NULL;

¢ Link of Code: Semaphores without Mutex Example Code

Considerations for Semaphore Usage

e If you plan to implement more complex buffer operations (e.g.,
actually storing data instead of just printing characters), you
will need to use a mutex to avoid race conditions.

e While semaphores may seem convenient, they become less
effective as more rules are added, making them harder to
manage.

e |t's often better to use condition variables for complex
synchronization needs.

) = = = =TT
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Real-World Concurrent
Programming
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Visual Studio Code: A Web Application

Did you know? Visual Studio Code is a Web App!
e Visual Studio Code (VS Code) is built using Electron, which is
essentially a web browser.
e It runs inside a Chromium engine, meaning it is just like a web
page!
® The editor is a web application running locally.
® The entire Ul is powered by HTML, CSS, and JavaScript.

e Many extensions and features interact with VS Code just like a
website interacts with a backend.

® The backend is built with Node.js, handling interactions.




I'M ,
WATCHING %

I've heard Cursor is pretty good too! I've been using it
recently...




From Web 1.0 to Web 2.0

The Web 2.0 Era (1999)

e The Internet brought people closer together.

e "Users were encouraged to provide content, rather than just
viewing it.”

® You can even find early hints of "Web 3.0"/Metaverse in this
period.




From Web 1.0 to Web 2.0: The Rise of Ajax

Asynchronous JavaScript and XML (Ajax, 1999)
¢ Revolutionized the Web:
* Allowed web pages to update content without reloading the
entire page.
® Made dynamic, interactive applications possible in the browser.

® Enabled background communication with the server, improving
user experience.

e How does it work?

® JavaScript sends a request to the server asynchronously.

® The server responds with data, which JavaScript processes.

* The webpage updates dynamically by modifying the DOM.
e Surprising Fact: It wasn't JSON!

® Early Ajax applications often used XML, not JSON.

* Why? Many backend applications (especially Java) primarily used
XML.




jQuery: Making JavaScript Easier (2006)

Why jQuery?
e JavaScript was powerful but messy—working with the DOM
was difficult.
® jQuery simplified JavaScript and made it more readable.
e Cross-browser compatibility—jQuery handled inconsistencies
between browsers.
Key Features of jQuery:
e Easier DOM Manipulation:
* Example: Replacing all ‘<h3>' elements with "XXX":

’ $("h3’) .replaceWith (' XXX'); ‘

e Built-in Animation & Effects
e Simplified Ajax Requests
Impact:
* jQuery made it easy for developers to create interactive
websites.
e |t paved the way for modern front-end frameworks like React,
Angular, and Vue.




Then, Everything Can Be Done in the Browser

e HTML + CSS made applications more flexible and faster than
traditional GUI programming.

e This even led to the creation of ChromeOS.

Do you remember?
e GTK, Qt, MFC... Who used those? (Me <)




Why Did Web Replace Traditional GUI Frameworks?

Web (HTML + CSS + JavaScript) vs. Traditional GUI (GTK, Qt,
MFC)

e Cross-Platform & No Installation Required

® Traditional GUI frameworks require separate implementations
for Windows, Linux, and Mac.
® Web apps run on any device with a browser, no installation
needed.
¢ Higher Development Efficiency

® Traditional GUI apps require manual Ul component design.
* Web frameworks (React, Vue, Angular) provide reusable
components.
e Easier Distribution & Maintenance

* Traditional apps require packaging (EXE/DMG) and manual
updates.

* Web apps update instantly on the server—no user action
required.




Concurrent Programming in the Web 2.0 Era

Challenges

® Threads became popular in the 1990s.

* Thread synchronization is difficult and error-prone.
Solution: Event-based concurrency (Dynamic Computation
Graphs)

¢ Allows computation nodes to be created at runtime.

® Examples: Network requests, timers.

¢ No parallel execution of computation nodes

® Most time is spent on network access; browser-side
computation is minimal.

e Uses events as fundamental scheduling units.
® Events can be observed inside the browser!




More one Features and Challenges

Features:

e Not very complex
* Minimal computation required
* The DOM tree is not too large (humans can't handle huge trees

anyway)
® The browser handles rendering the DOM tree for us

e Not too much I/0, just a few network requests
Challenges:
e Too many programmers, especially for beginners

e Expecting beginners to handle multithreading with shared
memory would lead to a world full of buggy applications!




Web Concurrency

Why is Web Concurrency Unique?
e JavaScript in browsers is single-threaded.
e Blocking operations would freeze the entire page!
e Solution: Event-driven concurrency (Event Loop).
Event Loop: Managing Asynchronous Execution
e Main thread executes JavaScript code sequentially.

e Asynchronous operations (e.g., network requests, timers) are
sent to the browser API.

e Once completed, these tasks re-enter the JavaScript engine via
an event queue.

Example: What gets printed first?

console.log("1");
setTimeout (() => console.log("2"), 0);

Promise.resolve() .then(() => console.log("3"));

console.log("4");




Understanding the Event Loop: Execution Order

Expected Output:

e 1 -> Executed first (synchronous).

e 4 -> Executed second (synchronous).

e 3 -> Executed third (Promise.then() -> microtask queue).

e 2 -> Executed last (setTimeout -> macrotask queue).
Why?

e JavaScript first executes all synchronous code.

e Then it processes microtasks (Promise callbacks).

e Finally, it executes macrotasks (setTimeout, I/0 events).
Microtask vs. Macrotask Queue

e Microtasks (higher priority): Promise callbacks,
queueMicrotask ().

e Macrotasks: setTimeout, setinterval, I/0 operations.

Key Takeaway: The Event Loop ensures JavaScript remains
responsive while handling asynchronous tasks efficiently.

Web



Single-Threaded + Event Loop

Asynchronous with minimal but sufficient concurrency:

¢ Single thread, global event queue, sequential execution
(run-to-complete)

e Time-consuming APIs (Timer, Ajax, etc.) return immediately
e When conditions are met, a new event is added to the queue
Example: Chained Ajax Calls

$.ajax( { url: ’"https://xxx.yyy.zzz/login’,
success: function(resp) {
S.ajax( { url: "https://xxx.yyy.zzz/cart’,
success: function(resp) {
// do something
b
error: function(req, status, err) { ... }
}
b
error: function(req, status, err) { ... }

)i




Solution: Asynchronous Event Model

Advantages:
e Concurrency model is greatly simplified
® Function execution is atomic (no parallel execution, reducing
the chance of concurrency bugs)
e APIs can still run in parallel
e Suitable for web applications where most time is spent on
rendering and network requests
® JavaScript code only "describes” the DOM Tree

Disadvantages:
e Callback hell (the infamous “spaghetti code”)

® As seen in the previous example, nesting 5 levels deep makes
the code nearly unmaintainable




Asynchronous Programming: Promise

Definition:
e The Promise object represents the eventual completion (or
failure) of an asynchronous operation and its resulting value.
Promise: An Embedded Language for Describing Workflows
¢ Chaining:

loadScript ("/article/promise-chaining/one. js")
.then(script => loadScript ("/article/promise-chaining/two.js"))
.then (script => loadScript ("/article/promise-chaining/three.js"))
.then(script => {
// scripts are loaded, we can use functions declared there
1)
.catch(err => { ... });

¢ Fork-join:

a = new Promise ((resolve, reject) => { resolve('A’) });

b = new Promise ((resolve, reject) => { resolve(’B’) });

¢ = new Promise ((resolve, reject) => { resolve(’'C’) });
(re

Promise.all([a, b, c]).then(res => { console.log(res) });




Advantages of Promise

e Readability: Promise chaining improves code readability by
avoiding deeply nested callbacks, making asynchronous
operations easier to follow.

¢ Error Handling: Provides a clear and structured way to handle
errors through .catch(), reducing complexity compared to
traditional callback error handling.

e Control Flow: Promises enable better control over the
execution order of asynchronous tasks, ensuring that steps are
completed in sequence.

e Flexibility: Easily integrates with modern JavaScript features
like async/await for even cleaner and more readable code.




Writing Asynchronous Code Like Synchronous Code

Problem with Callbacks and Promises:
e Callback Hell: Nested functions become unreadable.
e Promises improve structure but still require chaining.
Solution: async/await (ES8)
¢ async functions always return a Promise.
* await pauses execution until the Promise resolves.
e Looks synchronous, but runs asynchronously!




}

async function fetchbData() {
console.log("Start");
let response = await fetch('https://example.com/data’);
let data = await response.json();
console.log("Data, loaded:", data);

console.log("Before fetch");
fetchData();
console.log("After_fetch");

Understanding Execution Order:

"Before fetch" -> Executed first.

"Start" -> Executed second.

fetch () runs asynchronously, doesn't block execution!
"After fetch" -> Executed third.

Once the request completes, "Data loaded:" is printed.




Async-Await: Even Better

async function:
e Always returns a Promise object
® async_func () -fork

® await promise -join

A = async () => await $.ajax(’/hello/a’);
B = async () => await $.ajax(’/hello/b’);
C = async () => await $.ajax(’/hello/c’);
hello = async () => await Promise.all([A(), B(), C(1);
hello ()
.then (window.alert)
.catch(res => { console.log(’fetch_failed!’) });




From "Frontend” to "Full Stack”

ECMAScript 2015 (ES6)
e Standardized JavaScript, resolving the "library wars” chaos.

e The rise of open-source ecosystems fueled frontend
innovation.

Modern Frontend Technologies
e Frontend Frameworks: Angular, React, Vue
e Full Stack Development: Express.js, Next.js

e (CSS Frameworks: Bootstrap, TailwindCSS
e Beyond the Browser: Electron (VS Code)
* Web technologies power desktop applications.

Frontend technologies are no longer just for browsers,; they have
expanded to backend and even desktop applications!




The Wheels of History Rolling Forward

PC-> Web -> Web 2.0 (UGC) -> Al (AGI)

e Frameworks drive technological advancements.

e We need high-level abstractions to express real-world human
needs.

e Simplicity and Clarity -> Attracts a large number of industry
developers.

* Flexibility and Generalization -> Enables the construction of
diverse applications.

Standalone Computers -> Internet -> Mobile Computing -> ???
e Opportunities and Uncertainty
e Risks and Rewards




Concurrent Programming in HPC

e The World’'s Most Expensive Sofa
® The First Supercomputer (1976)
® Single-processor system
® 138 million FLOPs (Floating Point
Operations per Second)
® 40 times faster than IBM 370 at the
time
® Slightly better than embedded chips
today

e Processed large data sets with one
instruction

First Supercomputer (CRAY-1 from Los
Alamos National Laboratory in 1976)




Features of HPC

"A technology that harnesses the power of supercomputers or
computer clusters to solve complex problems requiring massive
computation.” (IBM)

e Computation-Centric

e System Simulation: Weather forecasting, energy, molecular
biology
Artificial Intelligence: Neural network training

Mining: Pure hash computation
TOP 500 (https://www.top500.org/)

® No. 1



https://www.top500.org/
https://www.top500.org/system/180307/

Parallel Computing in HPC

Static Partitioning in Traditional Computation (Machine-Thread
Two-Level Task Decomposition)

e The Producer-Consumer Model solves most problems.
e MPI - "Message Passing Interface” for distributed computing.

e OpenMP - "Multi-platform shared-memory parallel
programming (C/C++ and Fortran).”

Example: OpenMP Parallelization

#pragma omp parallel num_threads (128)
for (int i = 0; 1 < 1024; i++) {

// Parallel execution
}

Challenges in HPC:
e Network latency, power consumption, stability, and scalability.
e Hardware-software toolchains.



https://hpc-tutorials.llnl.gov/mpi/
https://www.openmp.org/

Example: Mandelbrot Set

¢ Z§+1 =ZF+C

e Each point in the Mandelbrot set
iterates independently and is
only influenced by its complex

coordinate.

e Link of Code:
Mandelbrot Set Code

e While the number of cores is not the only factor, it is the most
critical factor for determining thread execution efficiency.

e Core count helps estimate the system’s computational capacity
and parallel processing capabilities.

e Therefore, it is a key factor in HPC.



https://github.com/xinliulab/CIS5370_Computer_Security/blob/main/lecture_code/concurrency/16_mandelbrot.c

Concurrent Programming in Data Centers

Google Data Center

Data Center 64 /81



Features of Data Center

Data Center

“A network of computing and storage resources that enable the
delivery of shared applications and data.” (CISCO)

e Data-Centric (Storage-Focused) Approach
® Originated from internet search (Google), social networks
(Facebook/Twitter)
® Powers various internet applications: Gaming/Cloud Storage/
WecChat/Alipay/...

e The Importance of Algorithms/Systems for HPC and Data
Centers
® You manage 1,000,000 servers
® A 1% improvement in an algorithm or implementation can save
10,000 servers

Data Center 65/81



Main Challenges of Data Center

e Serving massive, geographically distributed requests
e Data must remain consistent (Consistency)
e Services must always be available (Availability)
e Must tolerate machine failures (Partition Tolerance)

ORACLE ",\\é
oatasase MySCl
Availability Consistency
Always accessible All replicates
are updated
mazon Google
cassandra DaymlmoDB .NTSTgL: BigTa%le
Q Couchbase HBASE

Partition Tolerance
System works despite network delay/latency

Data Center



We foucus on a single machine

How to Maximize Parallel Request Handling with a Single Machine
e Key Metrics: QPS, Tail Latency, ...

Data Center 67 /81



Maximizing Parallel Request Handling: Threads

Advantages:

e True parallelism with multiple cores, enabling multiple
execution flows.

e OS-level scheduling, allowing independent tasks to be
managed efficiently by the operating system.

e Well-supported by most programming languages and
operating systems.

Disadvantages:
e Higher overhead due to system calls and context switching.

e Limited by the number of cores, potentially leading to
contention and inefficiencies with too many threads.

e Memory overhead due to thread stacks and system resources.

e Link of Code: Thread Example Code

Data Center 68/ 81


https://github.com/xinliulab/CIS5370_Computer_Security/blob/main/lecture_code/concurrency/17_thread.py

Maximizing Parallel Request Handling: Coroutines

Advantages:

e More lightweight than threads, as they don't require system
calls or context switches.

¢ Link of Code: Coroutine Example Code

Data Center 69/ 81


https://github.com/xinliulab/CIS5370_Computer_Security/blob/main/lecture_code/concurrency/18_coroutine.py

Why are Coroutines More Lightweight?

e User-Space Scheduling: Coroutines are managed in user
space and do not require kernel intervention, avoiding the
overhead of system calls.

e Minimal Context Switching: Switching between coroutines
requires saving only a small amount of information:

* Execution Position: The point in the code where the coroutine
yields or resumes (similar to the program counter in threads).

* Local Variables and Stack Frame: The current state of local
variables and the execution stack.

e Comparison with Threads: Threads require the operating
system to save and restore more extensive context:

e All CPU registers, including general-purpose and floating-point
registers.

® Program counter and stack pointer, which determine the
execution position and stack location.

® Thread-specific kernel data structures, which manage the
thread's scheduling and other metadata.

Data Center 70/ 81



Disadvantages of Coroutines

e No true parallelism

® Asingle thread can only run one coroutine at a time.
® Although multiple coroutines can exist within the same thread,
only one is active at any given moment.
® The quick switching between coroutines creates the illusion of
concurrency.
¢ Blocking Operations:

¢ |f a coroutine encounters a blocking operation (e.g., system
calls), it blocks the entire thread.
® This means all other coroutines in the same thread are also
blocked, causing a significant performance issue.
e Requires manual yielding: Developers must manually control
when a coroutine yields, which can lead to more complex code
management.

e Less well-supported: Coroutines are not as universally
supported across programming languages as threads.

Data Center 711781



Maximizing Parallel Request Handling: Go

Goroutines = Threads + Coroutines
Advantages:

e Extremely lightweight

e Enable true parallel execution on multiple cores

e |deal for high-concurrency systems with minimal developer
management

e Efficient CPU utilization, achieving near 100% performance
Disadvantages:

e Go runtime’s scheduling decisions are opaque, making it
harder to control execution flow.

e Debugging and profiling goroutines can be more difficult due
to their lightweight nature and runtime control.

e Not available in all languages, limited to the Go ecosystem.

Data Center 721/ 81



Why Goroutines = Threads + Coroutines?

e When a Goroutine encounters a blocking system call:
* Automatically converts blocking system calls (e.g., file I/0) into
non-blocking operations.
* Moves the Goroutine off the current thread and schedules
another Goroutine to continue execution.
® This ensures that no Goroutine blocks the entire system,
maximizing concurrency.

¢ Link of Code: Goroutine Example Code

Data Center 731/ 81


https://github.com/xinliulab/CIS5370_Computer_Security/blob/main/lecture_code/concurrency/go-examples

Concurrent Programming
in the Age of Al




NVIDIA DGX-1 (2016)

8 x Tesla V100: The Computational Core of DGX-1
e DGX-1is a complete Al supercomputer designed by NVIDIA.
e |tintegrates 8 Tesla V100 GPUs into a single system.
These GPUs are interconnected using NVSwitch, providing
high-speed GPU-to-GPU communication (300GB/s).

Compared to standalone GPUs, DGX-1 includes:

® 2 x Intel Xeon CPUs for coordination.

* 512GB DDR4 RAM for system memory.

* 15TB NVMe SSD for high-speed storage.

® Optimized power and cooling system (3.2kW power
consumption).

Performance: 170 TFLOPS @ 3.2kW
e Comparison: CRAY-1: 138 MFLOPS @ 115kW
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NVIDIA DGX B200 (2024)

8 x Blackwell GPUs: The Computational Core of DGX B200

e DGX B200 is the latest Al supercomputer designed by
NVIDIA.

It integrates 8 Blackwell GPUs into a single system.

These GPUs are interconnected using NVLink and NVSwitch,
providing ultra-high-speed communication.
Compared to standalone GPUs, DGX B200 includes:

* Optimized Al acceleration for large-scale training and

inference.

¢ High-bandwidth memory (HBM) for faster data access.

* Advanced power and cooling solutions for efficient operation.
Performance:

e 72 PFLOPS (Training), 144 PFLOPS (Inference) @ 14.3kW

Data Center 76/ 81



Computation Behind Large Language Models

"Attention Is All You Need"

LLM Visualization

Data Center 77181


https://arxiv.org/pdf/1706.03762
https://bbycroft.net/llm

Single Compute-Intensive Slice (1): SIMD

Single Instruction, Multiple Data
e Tensor Instructions (Tensor Core): Mixed Precision

AxB+C

® Asingle instruction performs a 4 x 4 matrix operation.

D=

FP16 or FP32

FP16 or FP32

e x86 SIMD Evolution:

* MMX (MultiMedia eXtension, 64-bit MM) — SSE (Streaming SIMD
Extensions, 128-bit) — AVX (Advanced Vector eXtensions,
256-bit) — AVX512 (512-bit)

Data Center 78781



Single Compute-Intensive Slice (2): SIMT

Single Instruction, Multiple Threads

e One PC (Program Counter) controls 32 execution flows
simultaneously.

® The number of logical threads can be even larger.
e Each execution flow has its own registers.
® Three registers (x, y, and z) are used to store the "thread ID".

e Then, a massive number of threads!
X; Y;
| =B N l
Z;

__syncwarp(Q Time

if (threadIidx.x < 4) {
A;

B;

} else {
X;
Y;

Data Center



e Most of the synchronization problems you will face are just
variations of the Producer-Consumer problem.

* Mastering condition variables is enough to handle most
real-world scenarios.

e The restis justicing on the cake.

Takeaways 80/81



o Web

® Focus: Usability
® Pattern: Single Thread + Event Loop
® Technologies: Promise

e High-Performance Computing

® Focus: Task Decomposition
® Pattern: Producer-Consumer
® Technologies: MPI / OpenMP

e Data Centers

® Focus: System Calls
® Pattern: Threads-Coroutines
® Technologies: Goroutine

o Al

® Focus: Parallel Computation & Scalability
e Pattern: Data Parallelism + Model Parallelism
® Technologies: SIMIT / CUDA / TensorRT

Takeaways 81/81
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