Lect. 15: Real-World Concurrent Programming

Xin Liu

Florida State University
xliu15@fsu.edu

CIS 5370 Computer Security
https://xinliulab.github.io/cis5370.html

mailto:xliu15j@fsu.edu
https://xinliulab.github.io/cis5370.html

Outline
Concurrency Control and Synchronization

e Splinlock
e Producer-Consumer Problem

e Condition Variables
e Semaphores

Real-World Concurrent Programming

e World Wide Web
High-Performance computing (HPC)
Data Center

o Al

Concurrency Control and
Synchronization

Spinlocks

Spinlocks

e Aspinlock is a simple lock where a thread constantly checks for
lock availability.

* Imagine a single key to a critical section. The first thread to
acquire the key can enter.

e Hardware instructions ensure atomic key exchange.

Spinlock 3/81

Understanding Spinlocks Thoroughly

The single atomic instruction (xchg) ensures no race condition.

// 0 means unlocked, 1 means locked
int lock = 0;

void acquire_lock(int *lock) {
while (*lock = 0) {}
*lock = 1;

void release_lock(int *lock) {
*lock = 0;
}

void *foo(void *arg) {
acquire_lock(&lock);
// Critical section: Do work here ...
release_lock(&lock);
return NULL;

// 0 means unlocked, 1 means locked
int lock = 0;

int xchg(int *addr, int newval) {
int result;
asm volatile (
"lock xchg %0, %1"
. "+m"” (*addr), "=a" (result)
:"1" (newval)
sec”
)
return result;

}

void acquire_lock(int *lock) {
while (xchg(lock, 1)) {}

}

void release_lock(int *lock) {
xchg(lock, 0);
}

void *foo(void *arg) {
acquire_lock(&lock);
// Critical section: Do work here ...
release_lock(&lock);
return NULL;

Spinlock

Rules for Acquiring a Lock

e Grab first, verify later: Don't bother checking if the lock is
free. Just grab it and verify its status later.

e Be fast: Grab that lock as quickly as possible before anyone
else does.

Spinlock 5/81

Spinlocks

Spinlocks
e Aspinlock is a simple lock where a thread constantly checks for
lock availability.

* Imagine a single key to a critical section. The first thread to
acquire the key can enter.

e Hardware instructions ensure atomic key exchange.

Performance Issue

e Spinlocks can cause inefficiency, especially if many threads
compete for the same lock, leading to frequent context
switches (Grab first, verify later).

e If a thread holding the lock is swapped out, all other threads
continue busy-waiting, wasting CPU resources, because the
CPU still considers them active (either in the Running or Ready
to Run state).

Spinlock Prod sumer Cc

Mutexes and Futexes

e The lock is managed by the OS kernel.

e When a thread attempts to acquire a mutex that is already
locked, the OS puts the thread to sleep (blocked state) instead
of busy-waiting.

e The kernel wakes up the thread when the lock becomes
available, preventing it from wasting CPU time while waiting
for the lock.

e Afutex is a combination of spinlocks and mutexes.

e |t starts with spinning and escalates to a kernel-based mutex
when needed.

e This hybrid approach improves performance by reducing both
busy-waiting in user space and context switches to the kernel.

Spinlock Prodt

Example: Mutex with 3 Threads (Sleep and Wake-up)

@ Thread X acquires the lock first and enters the critical section.

® Thread Y and Thread Z attempt to acquire the lock but go into
a sleep (blocked state) since the lock is already held by X.

© Once X finishes and releases the lock, the OS wakes up Y,
typically following a first-come, first-served policy (FIFO) or
priority-based scheduling.

@ After Thread Y completes its critical section and releases the
lock, the OS wakes up Z, which then acquires the lock.

e The waking mechanism is managed by the OS, which monitors
the release of the lock and uses it as the signal to wake the
next waiting thread.

Spinlock 8/81

The Essence of Concurrency Programming

e Collaborative relationships are a combination of Competition
Relationships and Dependency Relationships

Producer-Consumer 9/81

Competition Relationships

® |nvolves access and modification of shared resources within
threads

e When threads are independent
® The main concern is to avoid Competition Relationships
® Use synchronization mechanisms like Spinlocks and Mutex
Locks
® Ensure only one thread accesses the shared resource at a time
® Avoid data inconsistency and race conditions

e Focus on safe access within threads

Producer-Consumer 10/ 81

Dependency Relationships

e Involves execution order and causal relationships between
threads

e When one thread must complete before another can execute
® Use mechanisms like Condition Variables and Semaphores

e Control the execution order of threads
e Satisfy logical dependency requirements

e Focus on correct coordination between threads

Producer-Consumer 11781

Real-World Application

Core Question

e How do you coordinate multiple threads to handle tasks
efficiently in real-world systems?

Example: E-commerce Platform Order Processing System

e Order Validation: Check product inventory, user balance, and
coupon validity.

e Payment Processing: Deduct from user accounts or process
third-party payments.

e Inventory Update: Deduct product stock to prevent
overselling.

e Logistics Arrangement: Generate shipping orders and
arrange delivery.

* Notify Users: Send confirmation emails or SMS to users.

ock Producer-Consumer

Real-World Application (Cont.)

Challenges and Solutions

e Managing Shared Resources (Competition):
® Multiple threads updating inventory or user balances may cause

race conditions.
® Solution: Use Mutex locks to ensure only one thread modifies

shared resources at a time.
® Also, use transactions to roll back in case of failures, ensuring

data consistency.
e Managing Dependencies Between Threads (Dependency):
* Notification threads must wait until order processing is

complete.

® Solution: Use condition variables or semaphores to signal
thread progress and control execution order.

® Task queues can be used to arrange execution based on

dependencies.

Modeling Concurrent Problems

Producer-Consumer Problem

¢ A fundamental synchronization problem that allows you to
solve 99.9% of real-world concurrency issues.

Dining Philosophers Problem

* Another classic problem that demonstrates how multiple
entities share limited resources (like CPUs).

Producer-Consumer 14/ 81

Key Tools

Condition Variables

¢ A flexible synchronization primitive that allows threads to wait
until a specific condition is met.

Semaphores

e A more rigid mechanism used to control access to shared
resources by multiple threads.

Producer-Consumer 15781

Producer-Consumer Problem

Producer "O” and Consumer "X"

Producer: Consumer:
e Produces an item ("O") e Consumes an item ("X")
e Waits if storage is full e Waits if no item is available
e Must be synchronized e Synchronization ensures no

with the consumer consumption before production
e We need to ensure that the symbols ("O" and "X") are printed in
a valid sequence:

e Example:
® n = 3,000XX0XX000 (valid)
® n=3,0000XxXXX, O00XxX (invalid)

Producer-Consumer 16/ 81

Why Producer-Consumer is Widely Representative

* |nvolves two types of threads: Producers (generate data) and
Consumers (process data)

e Producers don't overflow the buffer and consumers don't try
to consume data that's not yet available.

Challenges:
e Synchronization and mutual exclusion
e Managing dependencies and inter-thread communication

Producer-Consumer 177181

Initial Attempt

e Ensure the condition is met using mutex locks.
e Link of Code: Producer-Consumer Example Code

e Stress Testing

¢ Link of Code: Stress Test Checker Code
e Command: ./a.out 2 | python3 pc_checker.py 2

o Bad News:

e After running the program for several hours, it actually failed!
® The issue is difficult to reproduce and to fix.
® Concurrent programming is highly challenging.

o Good News:

® The problem occurred while it was in your hands.
® Avoid taking shortcuts and always stick to the most reliable
methods.

Producer-Consumer 18781

https://github.com/xinliulab/CIS5370_Computer_Security/blob/main/lecture_code/concurrency/11_producer_consumer.c
https://github.com/xinliulab/CIS5370_Computer_Security/blob/main/lecture_code/concurrency/pc_checker.py

Condition Variables:
A Universal
Synchronization Method

The Essence of Synchronization

e The essence of synchronization is ensuring that multiple
threads or processes reach a known state at the same time,
so that they can proceed in coordination.

Example:

* Imagine two people (threads) trying to meet for dinner (a task).

e One is playing a game (task A), and the other is fixing a bug
(task B).

e They can't start dinner (synchronized task) until both have
finished their tasks (known state).

e Even if one person finishes earlier, they must wait for the
other.

Core Concept

® The core of synchronization is waiting for all necessary
conditions to be met before proceeding together.

= - = =T

Synchronization Example

e From the very beginning when you started working with
threads, you were already using synchronization.

e Can you find which part is synchronization?

pthread_t tl1, t2;

pthread_create(&tl, NULL, foo, NULL);
pthread_create(&t2, NULL, foo, NULL);

pthread_join(tl, NULL);
pthread_join(t2, NULL);

Condition Variables PAWE

Synchronization Example (Cont.)

e From the very beginning when you started working with
threads, you were already using synchronization.
e Can you find which part is synchronization?
® pthread.join ensures that the main thread waits for the other
threads to finish before continuing.
® This is a form of synchronization because it guarantees that all
threads reach a known state (completion) before the program
proceeds.

pthread_t tl1, t2;

pthread_create(&tl, NULL, foo, NULL);
pthread_create (&t2, NULL, foo, NULL);

pthread_join(tl, NULL);
pthread_join(t2, NULL);

Condition Variables 22/81

Problems with Initial Attempt

{

{

void xTproduce (void xarg)
while (1) {

retry:
pthread_mutex_lock (&1k) ;

if (count == n) {
pthread_mutex_unlock (&1k) ;

goto retry;
}
count++;
printf ("O");
pthread_mutex_unlock (&1k) ;

}
return NULL;

void xTconsume (void xarg)
while (1) {
retry:
pthread_mutex_lock (&1k) ;
if (count == 0) {
pthread_mutex_unlock (&1k) ;
goto retry;
}
count--;
printf ("X");
pthread_mutex_unlock (&1k) ;
}
return NULL;

Problems with Initial Attempt (Cont.)

void «Tproduce (void xarg) { void +Tconsume (void xarg) {
while (1) { while (1) {
retry: retry:
pthread_mutex_lock (&1k) ; pthread_mutex_lock (&1k) ;
if (count == n) { if (count == 0) {
pthread_mutex_unlock (&1k) ; pthread_mutex_unlock (&1k) ;
goto retry; goto retry;
} }
count++; count--;
printf ("O"); printf ("X");
pthread_mutex_unlock (&1k); pthread_mutex_unlock (&1k);
} }
return NULL; return NULL;
} }

e Busy Waiting: Both producer and consumer continuously
retry when the buffer is full or empty. This leads to a waste of
CPU resources.

e Resource Contention: Multiple threads constantly lock and
unlock the same mutex without meaningful progress when
conditions are not met, causing unnecessary contention.

e High CPU Utilization: The goto retry causes the threads to
remain in a tight loop, consuming CPU cycles even when they
should be waiting.

Condition Variables 24/ 81

Why Avoid Busy Waiting?

"Haste makes waste.”

Constant spinning and busy waiting lead to errors. Slowing down with
condition variables reduces mistakes.

Condition Variables 25/81

Tip 1: pthread_cond _wait

void xTproduce (void xarg) { void xTconsume (void xarg) {
while (1) { while (1) {
pthread_mutex_lock (&1k) ; pthread_mutex_lock (&1k) ;
while (count == n) { while (count == 0) {
pthread_cond_wait (¢not_full, &lk); pthread_cond_wait (¬_empty, &1k);
} }
count++; count--—;
printf ("O"); printf ("X");
pthread_cond_signal (¬_empty) ; pthread_cond_signal (¬_full);
pthread_mutex_unlock (&1k) ; pthread_mutex_unlock (&1k) ;
} }
return NULL; return NULL;
} }

® pthread_cond.wait: A thread goes to sleep and releases the
mutex while waiting for a condition (e.g., buffer not empty/full).
¢ Important: pthread_cond_-wait must be used with a mutex.
® The thread must first acquire the mutex lock before calling
pthread.cond.wait.

® pthread._cond.wait only handles waiting for a condition to be
met, it does not handle acquiring the lock.

Condition Variables 26/ 81

Tip 2: pthread _cond signal

void *Tproduce (void xarg) {

while (1) {
pthread_mutex_lock (&1k) ;
while (count == n) {

pthread_cond_wait (¬_full, &lk);

}
count++;
printf ("O");
pthread_cond_signal (¬_empty) ;
pthread_mutex_unlock (&1k) ;

}

return NULL;

}

void xTconsume (void xarg) {

while (1) {
pthread_mutex_lock (&1k) ;
while (count == 0) {

pthread_cond_wait (¬_empty, &lk);

}
count—-—;
printf ("X");
pthread_cond_signal (¬_full);
pthread_mutex_unlock (&1k) ;

}

return NULL;

}

® pthread_cond_signal: Wake up one waiting thread when the
condition is met (e.g., an item is produced or consumed).
® Which thread is woken up?
® |f multiple threads are waiting, the OS decides which thread to

wake up based on a scheduling policy, usually first-come,
first-served (FIFO) or priority-based.

Condition Variables

Tip 3: You can also use pthread _cond _broadcast

void xTproduce (void xarg) {

while (1) {
pthread_mutex_lock (&1k) ;
while (count == n) {

pthread_cond_wait (¬_full, &lk);

}
count++;
printf ("O");
pthread_cond_broadcast (¬_empty) ;
pthread_mutex_unlock (&1k) ;

}

return NULL;

}

void xTconsume (void xarg) {

while (1) {
pthread_mutex_lock (&1k) ;
while (count == 0) {

pthread_cond_wait (¬_empty, &lk);

}
count—-—;
printf ("X");
pthread_cond_broadcast (¬_full);
pthread_mutex_unlock (&1k) ;

}

return NULL;

}

® pthread_cond-broadcast: Wake up all waiting threads when

the condition is met.

®* When to use pthread_cond.broadcast?

® Use pthread._cond.broadcast when a global state changes that

affects all threads.

Condition Variables 28/81

The Most Important Tip: Two Condition Variables!

pthread_cond_t not_full = PTHREAD_COND_INITIALIZER;
pthread_cond_t not_empty = PTHREAD_COND_INITIALIZER;

¢ Avoid waking the same type of thread:
® Producers should not wake other producers, and consumers
should not wake other consumers.
® Producer thread:

® Waits on not_full when the buffer is full.
® Signals not_empty after producing an item, allowing consumers
to wake up and consume.
® Consumer thread:
® Waits on not_empty when the buffer is empty.
® Signals not_full after consuming an item, allowing producers to
wake up and produce.

¢ Link of Code: Single Condition Varaible Example Code

Condition Variables 29/81

https://github.com/xinliulab/CIS5370_Computer_Security/blob/main/lecture_code/concurrency/13_single_condition_variable.c

Deadlock with Single Condition Variable Example

‘pthread_cond_t buffer_change = PTHREAD_COND_INITIALIZER; ‘

e Scenario:
e Buffersize(n=1)
e 2 producer threads (P1, P2) and 2 consumer threads (C1, C2)
® The buffer is empty and C1 and C2 are sleeping
® P2 s also sleeping due to the buffer being full previously.

e Process:

® P1 produces an item, filling the buffer (count = 1), then signals
‘buffer_change’ (P1 is ready to run and not sleeping)

® The signal wakes up P2

® P2 is woken up, but finds the buffer is full, so P2 goes back to
sleep without sending any signal

® P1is scheduled by the OS, but P1 also finds the buffer is full and
goes to sleep without sending any signal

® The OS may now try to schedule C1 or C2, but they are still
sleeping, waiting for the signal that hasn't been sent

e Result:

* All threads are now in a sleeping state, resulting in deadlock

Condition Variables 30/81

Cause of Single Condition Variable Deadlock

e All threads rely on a signal to wake up, rather than
automatically waking when the condition becomes true.

A single condition variable may wake up the same type of
thread repeatedly.

No further signals can be sent, leading to deadlock.

Role of the Operating System:
* Manages thread scheduling and CPU time allocation
® Does not manage thread synchronization or signal passing
e Cannot wake threads
Thread Communication:
® Synchronization happens through condition variables (signals)
and mutexes
¢ Signals must be explicitly sent and received between threads
® Proper signal passing is critical for correct thread coordination

Condition Variables 31/81

Why Two Condition Variables Prevent Deadlock

A producer’s ‘not_empty’ signal only wakes consumers.
e A consumer’s ‘not_full’ signal only wakes producers.

At least one thread type can always proceed and change the
buffer state

Eliminates the possibility of all threads waiting at the same
time

Condition Variables 32/81

Limitations of Condition Variables

e Imagine a buffer with 5 slots, initially empty / full.

e If 5 producer / consumer threads want to produce / consume
'0’, a condition variable only allows one thread to produce /
consume at a time.

e But what if we want multiple threads to produce / consume 'O’
concurrently?

Semaphores 33/81

e Semaphore is a synchronization mechanism used to control
access to shared resources in concurrent systems.

e |t acts as an integer counter that tracks the availability of a
limited number of resources.

e |t can allow multiple threads to enter the critical section
simultaneously.

® However, you must ensure that there are no race conditions
when multiple threads are in the critical section. If there are no
such issues, semaphores can be used effectively.

Semaphores 34/81

Semaphore Operations

e Semaphores were first introduced by Edsger W. Dijkstra in
the 1960s.

e Semaphores operate similarly to condition variables, allowing
threads to wait and be signaled based on certain conditions.

Semaphores have two primary operations:
e P operation (from Dutch proberen, meaning "to try”):

® Decreases the semaphore’s value by 1.

¢ |f the value becomes negative, the thread performing the P
operation is blocked until the semaphore’s value becomes
positive.

e V operation (from Dutch verhogen, meaning "to increment”):

® Increases the semaphore’s value by 1.

* |f there are any blocked threads, the V operation wakes up one
of them.

Semaphores 35/81

Code Compariso

// Semaphores

// Condition Variables

void *Tproduce (void xarg) { void *Tproduce (void xarg)
while (1) { while (1) {
pthread_mutex_lock (&1k) ; P (&empty_sem) ;
while (count == n) {

pthread_cond_wait (¬_full, &lk);

}
count++;
printf ("O");
pthread_cond_signal (¬_empty) ;
pthread_mutex_unlock (&1k) ;

}

return NULL;

}

pthread_mutex_lock (&mutex) ;
printf ("O");
pthread_mutex_unlock (&mutex) ;

V(&full_sem);
return NULL;
}

void xTconsume (void xarg) {

void xTconsume (void xarg) {
while (1) {

while (1) {
pthread_mutex_lock (&1k) ; P (&full_sem);
while (count == 0) {

pthread_cond_wait (¬_empty, &lk);

}
count—-—;
printf ("X");
pthread_cond_signal (¬_full);
pthread_mutex_unlock (&1k) ;

}

return NULL;

}

pthread_mutex_lock (&mutex) ;
printf ("X");
pthread_mutex_unlock (&émutex) ;

V (&empty_sem) ;
}
return NULL;
}

e Link of Code: Semaphores Example Code

Semaphores /

https://github.com/xinliulab/CIS5370_Computer_Security/blob/main/lecture_code/concurrency/14_semaphore.c

Semaphores vs Condition Variables: Key Differences

e Resource Management:

® Semaphores have a built-in counter to manage resource
availability.

® Condition variables do not track resource availability. The
programmer must manage resource state manually.

e Wait/Wake Mechanism:

® Semaphores use the P (wait) and V (signal) operations to
automatically handle the blocking and unblocking of threads.

® Condition variables use pthread_cond_wait() to put a thread to
sleep and pthread_cond _ signal() or pthread_cond_broadcast()
to wake up waiting threads.

e Mutex Usage:

® Semaphores can be used with or without a mutex, allowing
multiple threads to access the critical section simultaneously
based on the semaphore's value.

® Condition variables must be used with a mutex, typically
allowing only one thread in the critical section at a time, even if
multiple threads are woken up.

Semaphores 37/81

Semaphores without Mutex

void *Tproduce (void xarg)
while (1) {
P (&empty_sem) ;
printf ("O");
V(&full_sem) ;
}

{

void xTconsume (void xarg)
while (1) {
P(&full_sem);
printf ("X");
V (&empty_sem) ;
}

{

return NULL;
} }

return NULL;

¢ Link of Code: Semaphores without Mutex Example Code

Considerations for Semaphore Usage

e If you plan to implement more complex buffer operations (e.g.,
actually storing data instead of just printing characters), you
will need to use a mutex to avoid race conditions.

e While semaphores may seem convenient, they become less
effective as more rules are added, making them harder to
manage.

e |t's often better to use condition variables for complex
synchronization needs.

) = = = =TT

Semaphores 38/81

https://github.com/xinliulab/CIS5370_Computer_Security/blob/main/lecture_code/concurrency/15_semaphore_no_mutex.c

Real-World Concurrent
Programming

emaphores Web HP

Visual Studio Code: A Web Application

Did you know? Visual Studio Code is a Web App!
e Visual Studio Code (VS Code) is built using Electron, which is
essentially a web browser.
e It runs inside a Chromium engine, meaning it is just like a web
page!
® The editor is a web application running locally.
® The entire Ul is powered by HTML, CSS, and JavaScript.

e Many extensions and features interact with VS Code just like a
website interacts with a backend.

® The backend is built with Node.js, handling interactions.

I'M ,
WATCHING %

I've heard Cursor is pretty good too! I've been using it
recently...

From Web 1.0 to Web 2.0

The Web 2.0 Era (1999)

e The Internet brought people closer together.

e "Users were encouraged to provide content, rather than just
viewing it.”

® You can even find early hints of "Web 3.0"/Metaverse in this
period.

From Web 1.0 to Web 2.0: The Rise of Ajax

Asynchronous JavaScript and XML (Ajax, 1999)
¢ Revolutionized the Web:
* Allowed web pages to update content without reloading the
entire page.
® Made dynamic, interactive applications possible in the browser.

® Enabled background communication with the server, improving
user experience.

e How does it work?

® JavaScript sends a request to the server asynchronously.

® The server responds with data, which JavaScript processes.

* The webpage updates dynamically by modifying the DOM.
e Surprising Fact: It wasn't JSON!

® Early Ajax applications often used XML, not JSON.

* Why? Many backend applications (especially Java) primarily used
XML.

jQuery: Making JavaScript Easier (2006)

Why jQuery?
e JavaScript was powerful but messy—working with the DOM
was difficult.
® jQuery simplified JavaScript and made it more readable.
e Cross-browser compatibility—jQuery handled inconsistencies
between browsers.
Key Features of jQuery:
e Easier DOM Manipulation:
* Example: Replacing all ‘<h3>' elements with "XXX":

’ $("h3’) .replaceWith (' XXX'); ‘

e Built-in Animation & Effects
e Simplified Ajax Requests
Impact:
* jQuery made it easy for developers to create interactive
websites.
e |t paved the way for modern front-end frameworks like React,
Angular, and Vue.

Then, Everything Can Be Done in the Browser

e HTML + CSS made applications more flexible and faster than
traditional GUI programming.

e This even led to the creation of ChromeOS.

Do you remember?
e GTK, Qt, MFC... Who used those? (Me <)

Why Did Web Replace Traditional GUI Frameworks?

Web (HTML + CSS + JavaScript) vs. Traditional GUI (GTK, Qt,
MFC)

e Cross-Platform & No Installation Required

® Traditional GUI frameworks require separate implementations
for Windows, Linux, and Mac.
® Web apps run on any device with a browser, no installation
needed.
¢ Higher Development Efficiency

® Traditional GUI apps require manual Ul component design.
* Web frameworks (React, Vue, Angular) provide reusable
components.
e Easier Distribution & Maintenance

* Traditional apps require packaging (EXE/DMG) and manual
updates.

* Web apps update instantly on the server—no user action
required.

Concurrent Programming in the Web 2.0 Era

Challenges

® Threads became popular in the 1990s.

* Thread synchronization is difficult and error-prone.
Solution: Event-based concurrency (Dynamic Computation
Graphs)

¢ Allows computation nodes to be created at runtime.

® Examples: Network requests, timers.

¢ No parallel execution of computation nodes

® Most time is spent on network access; browser-side
computation is minimal.

e Uses events as fundamental scheduling units.
® Events can be observed inside the browser!

More one Features and Challenges

Features:

e Not very complex
* Minimal computation required
* The DOM tree is not too large (humans can't handle huge trees

anyway)
® The browser handles rendering the DOM tree for us

e Not too much I/0, just a few network requests
Challenges:
e Too many programmers, especially for beginners

e Expecting beginners to handle multithreading with shared
memory would lead to a world full of buggy applications!

Web Concurrency

Why is Web Concurrency Unique?
e JavaScript in browsers is single-threaded.
e Blocking operations would freeze the entire page!
e Solution: Event-driven concurrency (Event Loop).
Event Loop: Managing Asynchronous Execution
e Main thread executes JavaScript code sequentially.

e Asynchronous operations (e.g., network requests, timers) are
sent to the browser API.

e Once completed, these tasks re-enter the JavaScript engine via
an event queue.

Example: What gets printed first?

console.log("1");
setTimeout (() => console.log("2"), 0);

Promise.resolve() .then(() => console.log("3"));

console.log("4");

Understanding the Event Loop: Execution Order

Expected Output:

e 1 -> Executed first (synchronous).

e 4 -> Executed second (synchronous).

e 3 -> Executed third (Promise.then() -> microtask queue).

e 2 -> Executed last (setTimeout -> macrotask queue).
Why?

e JavaScript first executes all synchronous code.

e Then it processes microtasks (Promise callbacks).

e Finally, it executes macrotasks (setTimeout, I/0 events).
Microtask vs. Macrotask Queue

e Microtasks (higher priority): Promise callbacks,
queueMicrotask ().

e Macrotasks: setTimeout, setinterval, I/0 operations.

Key Takeaway: The Event Loop ensures JavaScript remains
responsive while handling asynchronous tasks efficiently.

Web

Single-Threaded + Event Loop

Asynchronous with minimal but sufficient concurrency:

¢ Single thread, global event queue, sequential execution
(run-to-complete)

e Time-consuming APIs (Timer, Ajax, etc.) return immediately
e When conditions are met, a new event is added to the queue
Example: Chained Ajax Calls

$.ajax({ url: ’"https://xxx.yyy.zzz/login’,
success: function(resp) {
S.ajax({ url: "https://xxx.yyy.zzz/cart’,
success: function(resp) {
// do something
b
error: function(req, status, err) { ... }
}
b
error: function(req, status, err) { ... }

)i

Solution: Asynchronous Event Model

Advantages:
e Concurrency model is greatly simplified
® Function execution is atomic (no parallel execution, reducing
the chance of concurrency bugs)
e APIs can still run in parallel
e Suitable for web applications where most time is spent on
rendering and network requests
® JavaScript code only "describes” the DOM Tree

Disadvantages:
e Callback hell (the infamous “spaghetti code”)

® As seen in the previous example, nesting 5 levels deep makes
the code nearly unmaintainable

Asynchronous Programming: Promise

Definition:
e The Promise object represents the eventual completion (or
failure) of an asynchronous operation and its resulting value.
Promise: An Embedded Language for Describing Workflows
¢ Chaining:

loadScript ("/article/promise-chaining/one. js")
.then(script => loadScript ("/article/promise-chaining/two.js"))
.then (script => loadScript ("/article/promise-chaining/three.js"))
.then(script => {
// scripts are loaded, we can use functions declared there
1)
.catch(err => { ... });

¢ Fork-join:

a = new Promise ((resolve, reject) => { resolve('A’) });

b = new Promise ((resolve, reject) => { resolve(’B’) });

¢ = new Promise ((resolve, reject) => { resolve(’'C’) });
(re

Promise.all([a, b, c]).then(res => { console.log(res) });

Advantages of Promise

e Readability: Promise chaining improves code readability by
avoiding deeply nested callbacks, making asynchronous
operations easier to follow.

¢ Error Handling: Provides a clear and structured way to handle
errors through .catch(), reducing complexity compared to
traditional callback error handling.

e Control Flow: Promises enable better control over the
execution order of asynchronous tasks, ensuring that steps are
completed in sequence.

e Flexibility: Easily integrates with modern JavaScript features
like async/await for even cleaner and more readable code.

Writing Asynchronous Code Like Synchronous Code

Problem with Callbacks and Promises:
e Callback Hell: Nested functions become unreadable.
e Promises improve structure but still require chaining.
Solution: async/await (ES8)
¢ async functions always return a Promise.
* await pauses execution until the Promise resolves.
e Looks synchronous, but runs asynchronously!

}

async function fetchbData() {
console.log("Start");
let response = await fetch('https://example.com/data’);
let data = await response.json();
console.log("Data, loaded:", data);

console.log("Before fetch");
fetchData();
console.log("After_fetch");

Understanding Execution Order:

"Before fetch" -> Executed first.

"Start" -> Executed second.

fetch () runs asynchronously, doesn't block execution!
"After fetch" -> Executed third.

Once the request completes, "Data loaded:" is printed.

Async-Await: Even Better

async function:
e Always returns a Promise object
® async_func () -fork

® await promise -join

A = async () => await $.ajax(’/hello/a’);
B = async () => await $.ajax(’/hello/b’);
C = async () => await $.ajax(’/hello/c’);
hello = async () => await Promise.all([A(), B(), C(1);
hello ()
.then (window.alert)
.catch(res => { console.log(’fetch_failed!’) });

From "Frontend” to "Full Stack”

ECMAScript 2015 (ES6)
e Standardized JavaScript, resolving the "library wars” chaos.

e The rise of open-source ecosystems fueled frontend
innovation.

Modern Frontend Technologies
e Frontend Frameworks: Angular, React, Vue
e Full Stack Development: Express.js, Next.js

e (CSS Frameworks: Bootstrap, TailwindCSS
e Beyond the Browser: Electron (VS Code)
* Web technologies power desktop applications.

Frontend technologies are no longer just for browsers,; they have
expanded to backend and even desktop applications!

The Wheels of History Rolling Forward

PC-> Web -> Web 2.0 (UGC) -> Al (AGI)

e Frameworks drive technological advancements.

e We need high-level abstractions to express real-world human
needs.

e Simplicity and Clarity -> Attracts a large number of industry
developers.

* Flexibility and Generalization -> Enables the construction of
diverse applications.

Standalone Computers -> Internet -> Mobile Computing -> ???
e Opportunities and Uncertainty
e Risks and Rewards

Concurrent Programming in HPC

e The World’'s Most Expensive Sofa
® The First Supercomputer (1976)
® Single-processor system
® 138 million FLOPs (Floating Point
Operations per Second)
® 40 times faster than IBM 370 at the
time
® Slightly better than embedded chips
today

e Processed large data sets with one
instruction

First Supercomputer (CRAY-1 from Los
Alamos National Laboratory in 1976)

Features of HPC

"A technology that harnesses the power of supercomputers or
computer clusters to solve complex problems requiring massive
computation.” (IBM)

e Computation-Centric

e System Simulation: Weather forecasting, energy, molecular
biology
Artificial Intelligence: Neural network training

Mining: Pure hash computation
TOP 500 (https://www.top500.org/)

® No. 1

https://www.top500.org/
https://www.top500.org/system/180307/

Parallel Computing in HPC

Static Partitioning in Traditional Computation (Machine-Thread
Two-Level Task Decomposition)

e The Producer-Consumer Model solves most problems.
e MPI - "Message Passing Interface” for distributed computing.

e OpenMP - "Multi-platform shared-memory parallel
programming (C/C++ and Fortran).”

Example: OpenMP Parallelization

#pragma omp parallel num_threads (128)
for (int i = 0; 1 < 1024; i++) {

// Parallel execution
}

Challenges in HPC:
e Network latency, power consumption, stability, and scalability.
e Hardware-software toolchains.

https://hpc-tutorials.llnl.gov/mpi/
https://www.openmp.org/

Example: Mandelbrot Set

¢ Z§+1 =ZF+C

e Each point in the Mandelbrot set
iterates independently and is
only influenced by its complex

coordinate.

e Link of Code:
Mandelbrot Set Code

e While the number of cores is not the only factor, it is the most
critical factor for determining thread execution efficiency.

e Core count helps estimate the system’s computational capacity
and parallel processing capabilities.

e Therefore, it is a key factor in HPC.

https://github.com/xinliulab/CIS5370_Computer_Security/blob/main/lecture_code/concurrency/16_mandelbrot.c

Concurrent Programming in Data Centers

Google Data Center

Data Center 64 /81

Features of Data Center

Data Center

“A network of computing and storage resources that enable the
delivery of shared applications and data.” (CISCO)

e Data-Centric (Storage-Focused) Approach
® Originated from internet search (Google), social networks
(Facebook/Twitter)
® Powers various internet applications: Gaming/Cloud Storage/
WecChat/Alipay/...

e The Importance of Algorithms/Systems for HPC and Data
Centers
® You manage 1,000,000 servers
® A 1% improvement in an algorithm or implementation can save
10,000 servers

Data Center 65/81

Main Challenges of Data Center

e Serving massive, geographically distributed requests
e Data must remain consistent (Consistency)
e Services must always be available (Availability)
e Must tolerate machine failures (Partition Tolerance)

ORACLE ",\\é
oatasase MySCl
Availability Consistency
Always accessible All replicates
are updated
mazon Google
cassandra DaymlmoDB .NTSTgL: BigTa%le
Q Couchbase HBASE

Partition Tolerance
System works despite network delay/latency

Data Center

We foucus on a single machine

How to Maximize Parallel Request Handling with a Single Machine
e Key Metrics: QPS, Tail Latency, ...

Data Center 67 /81

Maximizing Parallel Request Handling: Threads

Advantages:

e True parallelism with multiple cores, enabling multiple
execution flows.

e OS-level scheduling, allowing independent tasks to be
managed efficiently by the operating system.

e Well-supported by most programming languages and
operating systems.

Disadvantages:
e Higher overhead due to system calls and context switching.

e Limited by the number of cores, potentially leading to
contention and inefficiencies with too many threads.

e Memory overhead due to thread stacks and system resources.

e Link of Code: Thread Example Code

Data Center 68/ 81

https://github.com/xinliulab/CIS5370_Computer_Security/blob/main/lecture_code/concurrency/17_thread.py

Maximizing Parallel Request Handling: Coroutines

Advantages:

e More lightweight than threads, as they don't require system
calls or context switches.

¢ Link of Code: Coroutine Example Code

Data Center 69/ 81

https://github.com/xinliulab/CIS5370_Computer_Security/blob/main/lecture_code/concurrency/18_coroutine.py

Why are Coroutines More Lightweight?

e User-Space Scheduling: Coroutines are managed in user
space and do not require kernel intervention, avoiding the
overhead of system calls.

e Minimal Context Switching: Switching between coroutines
requires saving only a small amount of information:

* Execution Position: The point in the code where the coroutine
yields or resumes (similar to the program counter in threads).

* Local Variables and Stack Frame: The current state of local
variables and the execution stack.

e Comparison with Threads: Threads require the operating
system to save and restore more extensive context:

e All CPU registers, including general-purpose and floating-point
registers.

® Program counter and stack pointer, which determine the
execution position and stack location.

® Thread-specific kernel data structures, which manage the
thread's scheduling and other metadata.

Data Center 70/ 81

Disadvantages of Coroutines

e No true parallelism

® Asingle thread can only run one coroutine at a time.
® Although multiple coroutines can exist within the same thread,
only one is active at any given moment.
® The quick switching between coroutines creates the illusion of
concurrency.
¢ Blocking Operations:

¢ |f a coroutine encounters a blocking operation (e.g., system
calls), it blocks the entire thread.
® This means all other coroutines in the same thread are also
blocked, causing a significant performance issue.
e Requires manual yielding: Developers must manually control
when a coroutine yields, which can lead to more complex code
management.

e Less well-supported: Coroutines are not as universally
supported across programming languages as threads.

Data Center 711781

Maximizing Parallel Request Handling: Go

Goroutines = Threads + Coroutines
Advantages:

e Extremely lightweight

e Enable true parallel execution on multiple cores

e |deal for high-concurrency systems with minimal developer
management

e Efficient CPU utilization, achieving near 100% performance
Disadvantages:

e Go runtime’s scheduling decisions are opaque, making it
harder to control execution flow.

e Debugging and profiling goroutines can be more difficult due
to their lightweight nature and runtime control.

e Not available in all languages, limited to the Go ecosystem.

Data Center 721/ 81

Why Goroutines = Threads + Coroutines?

e When a Goroutine encounters a blocking system call:
* Automatically converts blocking system calls (e.g., file I/0) into
non-blocking operations.
* Moves the Goroutine off the current thread and schedules
another Goroutine to continue execution.
® This ensures that no Goroutine blocks the entire system,
maximizing concurrency.

¢ Link of Code: Goroutine Example Code

Data Center 731/ 81

https://github.com/xinliulab/CIS5370_Computer_Security/blob/main/lecture_code/concurrency/go-examples

Concurrent Programming
in the Age of Al

NVIDIA DGX-1 (2016)

8 x Tesla V100: The Computational Core of DGX-1
e DGX-1is a complete Al supercomputer designed by NVIDIA.
e |tintegrates 8 Tesla V100 GPUs into a single system.
These GPUs are interconnected using NVSwitch, providing
high-speed GPU-to-GPU communication (300GB/s).

Compared to standalone GPUs, DGX-1 includes:

® 2 x Intel Xeon CPUs for coordination.

* 512GB DDR4 RAM for system memory.

* 15TB NVMe SSD for high-speed storage.

® Optimized power and cooling system (3.2kW power
consumption).

Performance: 170 TFLOPS @ 3.2kW
e Comparison: CRAY-1: 138 MFLOPS @ 115kW

Data Center 751781

NVIDIA DGX B200 (2024)

8 x Blackwell GPUs: The Computational Core of DGX B200

e DGX B200 is the latest Al supercomputer designed by
NVIDIA.

It integrates 8 Blackwell GPUs into a single system.

These GPUs are interconnected using NVLink and NVSwitch,
providing ultra-high-speed communication.
Compared to standalone GPUs, DGX B200 includes:

* Optimized Al acceleration for large-scale training and

inference.

¢ High-bandwidth memory (HBM) for faster data access.

* Advanced power and cooling solutions for efficient operation.
Performance:

e 72 PFLOPS (Training), 144 PFLOPS (Inference) @ 14.3kW

Data Center 76/ 81

Computation Behind Large Language Models

"Attention Is All You Need"

LLM Visualization

Data Center 77181

https://arxiv.org/pdf/1706.03762
https://bbycroft.net/llm

Single Compute-Intensive Slice (1): SIMD

Single Instruction, Multiple Data
e Tensor Instructions (Tensor Core): Mixed Precision

AxB+C

® Asingle instruction performs a 4 x 4 matrix operation.

D=

FP16 or FP32

FP16 or FP32

e x86 SIMD Evolution:

* MMX (MultiMedia eXtension, 64-bit MM) — SSE (Streaming SIMD
Extensions, 128-bit) — AVX (Advanced Vector eXtensions,
256-bit) — AVX512 (512-bit)

Data Center 78781

Single Compute-Intensive Slice (2): SIMT

Single Instruction, Multiple Threads

e One PC (Program Counter) controls 32 execution flows
simultaneously.

® The number of logical threads can be even larger.
e Each execution flow has its own registers.
® Three registers (x, y, and z) are used to store the "thread ID".

e Then, a massive number of threads!
X; Y;
| =B N l
Z;

__syncwarp(Q Time

if (threadIidx.x < 4) {
A;

B;

} else {
X;
Y;

Data Center

e Most of the synchronization problems you will face are just
variations of the Producer-Consumer problem.

* Mastering condition variables is enough to handle most
real-world scenarios.

e The restis justicing on the cake.

Takeaways 80/81

o Web

® Focus: Usability
® Pattern: Single Thread + Event Loop
® Technologies: Promise

e High-Performance Computing

® Focus: Task Decomposition
® Pattern: Producer-Consumer
® Technologies: MPI / OpenMP

e Data Centers

® Focus: System Calls
® Pattern: Threads-Coroutines
® Technologies: Goroutine

o Al

® Focus: Parallel Computation & Scalability
e Pattern: Data Parallelism + Model Parallelism
® Technologies: SIMIT / CUDA / TensorRT

Takeaways 81/81

	Spinlock
	Producer-Consumer
	Condition Variables
	Semaphores
	Web
	HPC
	Data Center
	Takeaways

