
Lect. 15: Real-World Concurrent Programming
Xin Liu

Florida State University
xliu15@fsu.edu

CIS 5370 Computer Security
https://xinliulab.github.io/cis5370.html

mailto:xliu15j@fsu.edu
https://xinliulab.github.io/cis5370.html

Outline
Concurrency Control and Synchronization
• Splinlock
• Producer-Consumer Problem
• Condition Variables
• Semaphores

Real-World Concurrent Programming
• World Wide Web
• High-Performance computing (HPC)
• Data Center
• AI

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 1 / 81

Concurrency Control andSynchronization

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 2 / 81

Spinlocks

Spinlocks
• A spinlock is a simple lock where a thread constantly checks forlock availability.
• Imagine a single key to a critical section. The first thread toacquire the key can enter.
• Hardware instructions ensure atomic key exchange.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 3 / 81

Understanding Spinlocks Thoroughly
The single atomic instruction (xchg) ensures no race condition.

// 0 means unlocked, 1 means lockedint lock = 0;

void acquire lock(int *lock) {while (*lock != 0) {}*lock = 1;
}

void release lock(int *lock) {*lock = 0;
}

void *foo(void *arg) {acquire lock(&lock);
// Critical section: Do work here ...release lock(&lock);return NULL;

}

// 0 means unlocked, 1 means lockedint lock = 0;
int xchg(int *addr, int newval) {int result;asm volatile (”lock xchg %0, %1”: ”+m” (*addr), ”=a” (result): ”1” (newval): ”cc”);return result;
}

void acquire lock(int *lock) {while (xchg(lock, 1)) {}
}

void release lock(int *lock) {xchg(lock, 0);
}

void *foo(void *arg) {acquire lock(&lock);
// Critical section: Do work here ...release lock(&lock);return NULL;

}

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 4 / 81

Rules for Acquiring a Lock

• Grab first, verify later: Don’t bother checking if the lock isfree. Just grab it and verify its status later.
• Be fast: Grab that lock as quickly as possible before anyoneelse does.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 5 / 81

Spinlocks
Spinlocks
• A spinlock is a simple lock where a thread constantly checks forlock availability.
• Imagine a single key to a critical section. The first thread toacquire the key can enter.
• Hardware instructions ensure atomic key exchange.

Performance Issue
• Spinlocks can cause inefficiency, especially if many threadscompete for the same lock, leading to frequent contextswitches (Grab first, verify later).
• If a thread holding the lock is swapped out, all other threadscontinue busy-waiting, wasting CPU resources, because theCPU still considers them active (either in the Running or Readyto Run state).

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 6 / 81

Mutexes and Futexes
Mutexes
• The lock is managed by the OS kernel.
• When a thread attempts to acquire a mutex that is alreadylocked, the OS puts the thread to sleep (blocked state) insteadof busy-waiting.
• The kernel wakes up the thread when the lock becomesavailable, preventing it from wasting CPU time while waitingfor the lock.

Futexes
• A futex is a combination of spinlocks and mutexes.
• It starts with spinning and escalates to a kernel-based mutexwhen needed.
• This hybrid approach improves performance by reducing bothbusy-waiting in user space and context switches to the kernel.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 7 / 81

Example: Mutex with 3 Threads (Sleep and Wake-up)
1 Thread X acquires the lock first and enters the critical section.
2 Thread Y and Thread Z attempt to acquire the lock but go intoa sleep (blocked state) since the lock is already held by X.
3 Once X finishes and releases the lock, the OS wakes up Y,typically following a first-come, first-served policy (FIFO) orpriority-based scheduling.
4 After Thread Y completes its critical section and releases thelock, the OS wakes up Z, which then acquires the lock.
• The waking mechanism is managed by the OS, which monitorsthe release of the lock and uses it as the signal to wake thenext waiting thread.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 8 / 81

The Essence of Concurrency Programming

• Collaborative relationships are a combination of CompetitionRelationships and Dependency Relationships

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 9 / 81

Competition Relationships

• Involves access and modification of shared resources withinthreads
• When threads are independent

• The main concern is to avoid Competition Relationships
• Use synchronization mechanisms like Spinlocks and MutexLocks
• Ensure only one thread accesses the shared resource at a time
• Avoid data inconsistency and race conditions

• Focus on safe access within threads

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 10 / 81

Dependency Relationships

• Involves execution order and causal relationships betweenthreads
• When one thread must complete before another can execute

• Use mechanisms like Condition Variables and Semaphores
• Control the execution order of threads
• Satisfy logical dependency requirements

• Focus on correct coordination between threads

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 11 / 81

Real-World Application
Core Question
• How do you coordinate multiple threads to handle tasksefficiently in real-world systems?

Example: E-commerce Platform Order Processing System
• Order Validation: Check product inventory, user balance, andcoupon validity.
• Payment Processing: Deduct from user accounts or processthird-party payments.
• Inventory Update: Deduct product stock to preventoverselling.
• Logistics Arrangement: Generate shipping orders andarrange delivery.
• Notify Users: Send confirmation emails or SMS to users.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 12 / 81

Real-World Application (Cont.)
Challenges and Solutions
• Managing Shared Resources (Competition):

• Multiple threads updating inventory or user balances may causerace conditions.
• Solution: Use Mutex locks to ensure only one thread modifiesshared resources at a time.
• Also, use transactions to roll back in case of failures, ensuringdata consistency.

• Managing Dependencies Between Threads (Dependency):
• Notification threads must wait until order processing iscomplete.
• Solution: Use condition variables or semaphores to signalthread progress and control execution order.
• Task queues can be used to arrange execution based ondependencies.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 13 / 81

Modeling Concurrent Problems

Producer-Consumer Problem
• A fundamental synchronization problem that allows you tosolve 99.9% of real-world concurrency issues.

Dining Philosophers Problem
• Another classic problem that demonstrates how multipleentities share limited resources (like CPUs).

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 14 / 81

Key Tools

Condition Variables
• A flexible synchronization primitive that allows threads to waituntil a specific condition is met.

Semaphores
• A more rigid mechanism used to control access to sharedresources by multiple threads.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 15 / 81

Producer-Consumer Problem
Producer ”O” and Consumer ”X”

Producer:
• Produces an item (”O”)
• Waits if storage is full
• Must be synchronizedwith the consumer

Consumer:
• Consumes an item (”X”)
• Waits if no item is available
• Synchronization ensures noconsumption before production

• We need to ensure that the symbols (”O” and ”X”) are printed ina valid sequence:
• Example:

• n = 3,OOOXXOXXOOO (valid)
• n = 3,OOOOXXXX, OOXXX (invalid)

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 16 / 81

Why Producer-Consumer is Widely Representative

• Involves two types of threads: Producers (generate data) andConsumers (process data)
• Producers don’t overflow the buffer and consumers don’t tryto consume data that’s not yet available.

Challenges:
• Synchronization and mutual exclusion
• Managing dependencies and inter-thread communication

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 17 / 81

Initial Attempt
• Ensure the condition is met using mutex locks.

• Link of Code: Producer-Consumer Example Code
• Stress Testing

• Link of Code: Stress Test Checker Code
• Command: ./a.out 2 | python3 pc checker.py 2

• Bad News:
• After running the program for several hours, it actually failed!
• The issue is difficult to reproduce and to fix.
• Concurrent programming is highly challenging.

• Good News:
• The problem occurred while it was in your hands.
• Avoid taking shortcuts and always stick to the most reliablemethods.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 18 / 81

https://github.com/xinliulab/CIS5370_Computer_Security/blob/main/lecture_code/concurrency/11_producer_consumer.c
https://github.com/xinliulab/CIS5370_Computer_Security/blob/main/lecture_code/concurrency/pc_checker.py

Condition Variables:A UniversalSynchronization Method

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 19 / 81

The Essence of Synchronization
• The essence of synchronization is ensuring that multiplethreads or processes reach a known state at the same time,so that they can proceed in coordination.

Example:
• Imagine two people (threads) trying to meet for dinner (a task).
• One is playing a game (task A), and the other is fixing a bug(task B).
• They can’t start dinner (synchronized task) until both havefinished their tasks (known state).
• Even if one person finishes earlier, they must wait for theother.

Core Concept
• The core of synchronization is waiting for all necessaryconditions to be met before proceeding together.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 20 / 81

Synchronization Example

• From the very beginning when you started working withthreads, you were already using synchronization.
• Can you find which part is synchronization?

pthread_t t1, t2;

pthread_create(&t1, NULL, foo, NULL);
pthread_create(&t2, NULL, foo, NULL);

pthread_join(t1, NULL);
pthread_join(t2, NULL);

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 21 / 81

Synchronization Example (Cont.)
• From the very beginning when you started working withthreads, you were already using synchronization.
• Can you find which part is synchronization?

• pthread join ensures that the main thread waits for the otherthreads to finish before continuing.
• This is a form of synchronization because it guarantees that allthreads reach a known state (completion) before the programproceeds.

pthread_t t1, t2;

pthread_create(&t1, NULL, foo, NULL);
pthread_create(&t2, NULL, foo, NULL);

pthread_join(t1, NULL);
pthread_join(t2, NULL);

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 22 / 81

Problems with Initial Attempt

void *Tproduce(void *arg) {
while (1) {

retry:
pthread_mutex_lock(&lk);
if (count == n) {
pthread_mutex_unlock(&lk);
goto retry;

}
count++;
printf("O");
pthread_mutex_unlock(&lk);

}
return NULL;

}

void *Tconsume(void *arg) {
while (1) {

retry:
pthread_mutex_lock(&lk);
if (count == 0) {
pthread_mutex_unlock(&lk);
goto retry;

}
count--;
printf("X");
pthread_mutex_unlock(&lk);

}
return NULL;

}

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 23 / 81

Problems with Initial Attempt (Cont.)
void *Tproduce(void *arg) {
while (1) {

retry:
pthread_mutex_lock(&lk);
if (count == n) {
pthread_mutex_unlock(&lk);
goto retry;

}
count++;
printf("O");
pthread_mutex_unlock(&lk);

}
return NULL;

}

void *Tconsume(void *arg) {
while (1) {

retry:
pthread_mutex_lock(&lk);
if (count == 0) {
pthread_mutex_unlock(&lk);
goto retry;

}
count--;
printf("X");
pthread_mutex_unlock(&lk);

}
return NULL;

}

• Busy Waiting: Both producer and consumer continuouslyretry when the buffer is full or empty. This leads to a waste ofCPU resources.
• Resource Contention: Multiple threads constantly lock andunlock the same mutex without meaningful progress whenconditions are not met, causing unnecessary contention.
• High CPU Utilization: The goto retry causes the threads toremain in a tight loop, consuming CPU cycles even when theyshould be waiting.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 24 / 81

Why Avoid Busy Waiting?

”Haste makes waste.”
Constant spinning and busy waiting lead to errors. Slowing down with

condition variables reduces mistakes.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 25 / 81

Tip 1: pthread cond wait
void *Tproduce(void *arg) {
while (1) {
pthread_mutex_lock(&lk);
while (count == n) {
pthread_cond_wait(¬_full, &lk);

}
count++;
printf("O");
pthread_cond_signal(¬_empty);
pthread_mutex_unlock(&lk);

}
return NULL;

}

void *Tconsume(void *arg) {
while (1) {
pthread_mutex_lock(&lk);
while (count == 0) {
pthread_cond_wait(¬_empty, &lk);

}
count--;
printf("X");
pthread_cond_signal(¬_full);
pthread_mutex_unlock(&lk);

}
return NULL;

}

• pthread cond wait: A thread goes to sleep and releases themutex while waiting for a condition (e.g., buffer not empty/full).
• Important: pthread cond wait must be used with a mutex.

• The thread must first acquire the mutex lock before calling
pthread cond wait.

• pthread cond wait only handles waiting for a condition to bemet, it does not handle acquiring the lock.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 26 / 81

Tip 2: pthread cond signal
void *Tproduce(void *arg) {
while (1) {
pthread_mutex_lock(&lk);
while (count == n) {
pthread_cond_wait(¬_full, &lk);

}
count++;
printf("O");
pthread_cond_signal(¬_empty);
pthread_mutex_unlock(&lk);

}
return NULL;

}

void *Tconsume(void *arg) {
while (1) {
pthread_mutex_lock(&lk);
while (count == 0) {
pthread_cond_wait(¬_empty, &lk);

}
count--;
printf("X");
pthread_cond_signal(¬_full);
pthread_mutex_unlock(&lk);

}
return NULL;

}

• pthread cond signal: Wake up one waiting thread when thecondition is met (e.g., an item is produced or consumed).
• Which thread is woken up?

• If multiple threads are waiting, the OS decides which thread towake up based on a scheduling policy, usually first-come,first-served (FIFO) or priority-based.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 27 / 81

Tip 3: You can also use pthread cond broadcast
void *Tproduce(void *arg) {
while (1) {
pthread_mutex_lock(&lk);
while (count == n) {
pthread_cond_wait(¬_full, &lk);

}
count++;
printf("O");
pthread_cond_broadcast(¬_empty);
pthread_mutex_unlock(&lk);

}
return NULL;

}

void *Tconsume(void *arg) {
while (1) {
pthread_mutex_lock(&lk);
while (count == 0) {
pthread_cond_wait(¬_empty, &lk);

}
count--;
printf("X");
pthread_cond_broadcast(¬_full);
pthread_mutex_unlock(&lk);

}
return NULL;

}

• pthread cond broadcast: Wake up all waiting threads whenthe condition is met.
• When to use pthread cond broadcast?

• Use pthread cond broadcast when a global state changes thataffects all threads.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 28 / 81

The Most Important Tip: Two Condition Variables!
pthread_cond_t not_full = PTHREAD_COND_INITIALIZER;
pthread_cond_t not_empty = PTHREAD_COND_INITIALIZER;

• Avoid waking the same type of thread:
• Producers should not wake other producers, and consumersshould not wake other consumers.
• Producer thread:

• Waits on not full when the buffer is full.
• Signals not empty after producing an item, allowing consumersto wake up and consume.

• Consumer thread:
• Waits on not empty when the buffer is empty.
• Signals not full after consuming an item, allowing producers towake up and produce.

• Link of Code: Single Condition Varaible Example Code

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 29 / 81

https://github.com/xinliulab/CIS5370_Computer_Security/blob/main/lecture_code/concurrency/13_single_condition_variable.c

Deadlock with Single Condition Variable Example
pthread_cond_t buffer_change = PTHREAD_COND_INITIALIZER;

• Scenario:
• Buffer size (n = 1)
• 2 producer threads (P1, P2) and 2 consumer threads (C1, C2)
• The buffer is empty and C1 and C2 are sleeping
• P2 is also sleeping due to the buffer being full previously.

• Process:
• P1 produces an item, filling the buffer (count = 1), then signals‘buffer change‘ (P1 is ready to run and not sleeping)
• The signal wakes up P2
• P2 is woken up, but finds the buffer is full, so P2 goes back tosleep without sending any signal
• P1 is scheduled by the OS, but P1 also finds the buffer is full andgoes to sleep without sending any signal
• The OS may now try to schedule C1 or C2, but they are stillsleeping, waiting for the signal that hasn’t been sent

• Result:
• All threads are now in a sleeping state, resulting in deadlock

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 30 / 81

Cause of Single Condition Variable Deadlock
• All threads rely on a signal to wake up, rather thanautomatically waking when the condition becomes true.
• A single condition variable may wake up the same type ofthread repeatedly.
• No further signals can be sent, leading to deadlock.
• Role of the Operating System:

• Manages thread scheduling and CPU time allocation
• Does not manage thread synchronization or signal passing
• Cannot wake threads

• Thread Communication:
• Synchronization happens through condition variables (signals)and mutexes
• Signals must be explicitly sent and received between threads
• Proper signal passing is critical for correct thread coordination

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 31 / 81

Why Two Condition Variables Prevent Deadlock

• A producer’s ‘not empty‘ signal only wakes consumers.
• A consumer’s ‘not full‘ signal only wakes producers.
• At least one thread type can always proceed and change thebuffer state
• Eliminates the possibility of all threads waiting at the sametime

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 32 / 81

Limitations of Condition Variables

• Imagine a buffer with 5 slots, initially empty / full.
• If 5 producer / consumer threads want to produce / consume’O’, a condition variable only allows one thread to produce /consume at a time.
• But what if we want multiple threads to produce / consume ’O’concurrently?

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 33 / 81

Semaphores

• Semaphore is a synchronization mechanism used to controlaccess to shared resources in concurrent systems.
• It acts as an integer counter that tracks the availability of alimited number of resources.
• It can allow multiple threads to enter the critical sectionsimultaneously.

• However, you must ensure that there are no race conditionswhen multiple threads are in the critical section. If there are nosuch issues, semaphores can be used effectively.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 34 / 81

Semaphore Operations
• Semaphores were first introduced by Edsger W. Dijkstra inthe 1960s.
• Semaphores operate similarly to condition variables, allowingthreads to wait and be signaled based on certain conditions.

Semaphores have two primary operations:
• P operation (from Dutch proberen, meaning ”to try”):

• Decreases the semaphore’s value by 1.
• If the value becomes negative, the thread performing the Poperation is blocked until the semaphore’s value becomespositive.

• V operation (from Dutch verhogen, meaning ”to increment”):
• Increases the semaphore’s value by 1.
• If there are any blocked threads, the V operation wakes up oneof them.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 35 / 81

Code Comparison
// Condition Variables
void *Tproduce(void *arg) {
while (1) {
pthread_mutex_lock(&lk);
while (count == n) {
pthread_cond_wait(¬_full, &lk);

}
count++;
printf("O");
pthread_cond_signal(¬_empty);
pthread_mutex_unlock(&lk);

}
return NULL;

}

void *Tconsume(void *arg) {
while (1) {
pthread_mutex_lock(&lk);
while (count == 0) {
pthread_cond_wait(¬_empty, &lk);

}
count--;
printf("X");
pthread_cond_signal(¬_full);
pthread_mutex_unlock(&lk);

}
return NULL;

}

// Semaphores
void *Tproduce(void *arg) {
while (1) {
P(&empty_sem);

pthread_mutex_lock(&mutex);
printf("O");
pthread_mutex_unlock(&mutex);

V(&full_sem);
return NULL;

}

void *Tconsume(void *arg) {
while (1) {
P(&full_sem);

pthread_mutex_lock(&mutex);
printf("X");
pthread_mutex_unlock(&mutex);

V(&empty_sem);
}
return NULL;

}

• Link of Code: Semaphores Example Code
Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 36 / 81

https://github.com/xinliulab/CIS5370_Computer_Security/blob/main/lecture_code/concurrency/14_semaphore.c

Semaphores vs Condition Variables: Key Differences
• Resource Management:

• Semaphores have a built-in counter to manage resourceavailability.
• Condition variables do not track resource availability. Theprogrammer must manage resource state manually.

• Wait/Wake Mechanism:
• Semaphores use the P (wait) and V (signal) operations toautomatically handle the blocking and unblocking of threads.
• Condition variables use pthread cond wait() to put a thread tosleep and pthread cond signal() or pthread cond broadcast()to wake up waiting threads.

• Mutex Usage:
• Semaphores can be used with or without a mutex, allowingmultiple threads to access the critical section simultaneouslybased on the semaphore’s value.
• Condition variables must be used with a mutex, typicallyallowing only one thread in the critical section at a time, even ifmultiple threads are woken up.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 37 / 81

Semaphores without Mutex
void *Tproduce(void *arg) {
while (1) {
P(&empty_sem);
printf("O");
V(&full_sem);

}
return NULL;

}

void *Tconsume(void *arg) {
while (1) {
P(&full_sem);
printf("X");
V(&empty_sem);

}
return NULL;

}

• Link of Code: Semaphores without Mutex Example Code
Considerations for Semaphore Usage
• If you plan to implement more complex buffer operations (e.g.,actually storing data instead of just printing characters), youwill need to use a mutex to avoid race conditions.
• While semaphores may seem convenient, they become lesseffective as more rules are added, making them harder tomanage.
• It’s often better to use condition variables for complexsynchronization needs.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 38 / 81

https://github.com/xinliulab/CIS5370_Computer_Security/blob/main/lecture_code/concurrency/15_semaphore_no_mutex.c

Real-World ConcurrentProgramming

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 39 / 81

Visual Studio Code: A Web Application

Did you know? Visual Studio Code is a Web App!
• Visual Studio Code (VS Code) is built using Electron, which isessentially a web browser.
• It runs inside a Chromium engine, meaning it is just like a webpage!

• The editor is a web application running locally.
• The entire UI is powered by HTML, CSS, and JavaScript.

• Many extensions and features interact with VS Code just like awebsite interacts with a backend.
• The backend is built with Node.js, handling interactions.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 40 / 81

Haven’t Tried Visual Studio Code Yet?

I’ve heard Cursor is pretty good too! I’ve been using itrecently...

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 41 / 81

From Web 1.0 to Web 2.0

The Web 2.0 Era (1999)
• The Internet brought people closer together.
• ”Users were encouraged to provide content, rather than justviewing it.”
• You can even find early hints of ”Web 3.0”/Metaverse in thisperiod.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 42 / 81

From Web 1.0 to Web 2.0: The Rise of Ajax
Asynchronous JavaScript and XML (Ajax, 1999)
• Revolutionized the Web:

• Allowed web pages to update content without reloading theentire page.
• Made dynamic, interactive applications possible in the browser.
• Enabled background communication with the server, improvinguser experience.

• How does it work?
• JavaScript sends a request to the server asynchronously.
• The server responds with data, which JavaScript processes.
• The webpage updates dynamically by modifying the DOM.

• Surprising Fact: It wasn’t JSON!
• Early Ajax applications often used XML, not JSON.
• Why? Many backend applications (especially Java) primarily usedXML.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 43 / 81

jQuery: Making JavaScript Easier (2006)Why jQuery?
• JavaScript was powerful but messy—working with the DOMwas difficult.
• jQuery simplified JavaScript and made it more readable.
• Cross-browser compatibility—jQuery handled inconsistenciesbetween browsers.Key Features of jQuery:
• Easier DOM Manipulation:

• Example: Replacing all ‘<h3>‘ elements with ”XXX”:
$(’h3’).replaceWith(’XXX’);

• Built-in Animation & Effects
• Simplified Ajax RequestsImpact:
• jQuery made it easy for developers to create interactivewebsites.
• It paved the way for modern front-end frameworks like React,Angular, and Vue.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 44 / 81

Then, Everything Can Be Done in the Browser

• HTML + CSS made applications more flexible and faster thantraditional GUI programming.
• This even led to the creation of ChromeOS.

Do you remember?
• GTK, Qt, MFC... Who used those? (Me)

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 45 / 81

Why Did Web Replace Traditional GUI Frameworks?
Web (HTML + CSS + JavaScript) vs. Traditional GUI (GTK, Qt,MFC)
• Cross-Platform & No Installation Required

• Traditional GUI frameworks require separate implementationsfor Windows, Linux, and Mac.
• Web apps run on any device with a browser, no installationneeded.

• Higher Development Efficiency
• Traditional GUI apps require manual UI component design.
• Web frameworks (React, Vue, Angular) provide reusablecomponents.

• Easier Distribution & Maintenance
• Traditional apps require packaging (EXE/DMG) and manualupdates.
• Web apps update instantly on the server—no user actionrequired.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 46 / 81

Concurrent Programming in the Web 2.0 Era
Challenges
• Threads became popular in the 1990s.
• Thread synchronization is difficult and error-prone.

Solution: Event-based concurrency (Dynamic ComputationGraphs)
• Allows computation nodes to be created at runtime.

• Examples: Network requests, timers.
• No parallel execution of computation nodes

• Most time is spent on network access; browser-sidecomputation is minimal.
• Uses events as fundamental scheduling units.

• Events can be observed inside the browser!

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 47 / 81

More one Features and Challenges
Features:
• Not very complex
• Minimal computation required

• The DOM tree is not too large (humans can’t handle huge treesanyway)
• The browser handles rendering the DOM tree for us

• Not too much I/O, just a few network requests
Challenges:
• Too many programmers, especially for beginners
• Expecting beginners to handle multithreading with sharedmemory would lead to a world full of buggy applications!

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 48 / 81

Web Concurrency
Why is Web Concurrency Unique?
• JavaScript in browsers is single-threaded.
• Blocking operations would freeze the entire page!
• Solution: Event-driven concurrency (Event Loop).

Event Loop: Managing Asynchronous Execution
• Main thread executes JavaScript code sequentially.
• Asynchronous operations (e.g., network requests, timers) aresent to the browser API.
• Once completed, these tasks re-enter the JavaScript engine viaan event queue.

Example: What gets printed first?
console.log("1");

setTimeout(() => console.log("2"), 0);

Promise.resolve().then(() => console.log("3"));

console.log("4");

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 49 / 81

Understanding the Event Loop: Execution Order
Expected Output:
• 1 -> Executed first (synchronous).
• 4 -> Executed second (synchronous).
• 3 -> Executed third (Promise.then() -> microtask queue).
• 2 -> Executed last (setTimeout -> macrotask queue).

Why?
• JavaScript first executes all synchronous code.
• Then it processes microtasks (Promise callbacks).
• Finally, it executes macrotasks (setTimeout, I/O events).

Microtask vs. Macrotask Queue
• Microtasks (higher priority): Promise callbacks,
queueMicrotask().

• Macrotasks: setTimeout, setInterval, I/O operations.
Key Takeaway: The Event Loop ensures JavaScript remainsresponsive while handling asynchronous tasks efficiently.
Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 50 / 81

Single-Threaded + Event Loop
Asynchronous with minimal but sufficient concurrency:
• Single thread, global event queue, sequential execution(run-to-complete)
• Time-consuming APIs (Timer, Ajax, etc.) return immediately
• When conditions are met, a new event is added to the queue

Example: Chained Ajax Calls
$.ajax({ url: ’https://xxx.yyy.zzz/login’,
success: function(resp) {
$.ajax({ url: ’https://xxx.yyy.zzz/cart’,
success: function(resp) {
// do something

},
error: function(req, status, err) { ... }

}
},
error: function(req, status, err) { ... }

);

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 51 / 81

Solution: Asynchronous Event Model
Advantages:
• Concurrency model is greatly simplified

• Function execution is atomic (no parallel execution, reducingthe chance of concurrency bugs)
• APIs can still run in parallel

• Suitable for web applications where most time is spent onrendering and network requests
• JavaScript code only ”describes” the DOM Tree

Disadvantages:
• Callback hell (the infamous ”spaghetti code”)
• As seen in the previous example, nesting 5 levels deep makesthe code nearly unmaintainable

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 52 / 81

Asynchronous Programming: Promise
Definition:
• The Promise object represents the eventual completion (orfailure) of an asynchronous operation and its resulting value.

Promise: An Embedded Language for Describing Workflows
• Chaining:

loadScript("/article/promise-chaining/one.js")
.then(script => loadScript("/article/promise-chaining/two.js"))
.then(script => loadScript("/article/promise-chaining/three.js"))
.then(script => {
// scripts are loaded, we can use functions declared there

})
.catch(err => { ... });

• Fork-join:
a = new Promise((resolve, reject) => { resolve(’A’) });
b = new Promise((resolve, reject) => { resolve(’B’) });
c = new Promise((resolve, reject) => { resolve(’C’) });
Promise.all([a, b, c]).then(res => { console.log(res) });

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 53 / 81

Advantages of Promise
• Readability: Promise chaining improves code readability byavoiding deeply nested callbacks, making asynchronousoperations easier to follow.
• Error Handling: Provides a clear and structured way to handleerrors through .catch(), reducing complexity compared totraditional callback error handling.
• Control Flow: Promises enable better control over theexecution order of asynchronous tasks, ensuring that steps arecompleted in sequence.
• Flexibility: Easily integrates with modern JavaScript featureslike async/await for even cleaner and more readable code.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 54 / 81

Writing Asynchronous Code Like Synchronous Code

Problem with Callbacks and Promises:
• Callback Hell: Nested functions become unreadable.
• Promises improve structure but still require chaining.

Solution: async/await (ES8)
• async functions always return a Promise.
• await pauses execution until the Promise resolves.
• Looks synchronous, but runs asynchronously!

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 55 / 81

Async-Await
async function fetchData() {
console.log("Start");
let response = await fetch(’https://example.com/data’);
let data = await response.json();
console.log("Data loaded:", data);

}
console.log("Before fetch");
fetchData();
console.log("After fetch");

Understanding Execution Order:
• "Before fetch" -> Executed first.
• "Start" -> Executed second.
• fetch() runs asynchronously, doesn’t block execution!
• "After fetch" -> Executed third.
• Once the request completes, "Data loaded:" is printed.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 56 / 81

Async-Await: Even Better

async function:
• Always returns a Promise object
• async func() - fork
• await promise - join

A = async () => await $.ajax(’/hello/a’);
B = async () => await $.ajax(’/hello/b’);
C = async () => await $.ajax(’/hello/c’);

hello = async () => await Promise.all([A(), B(), C()]);

hello()
.then(window.alert)
.catch(res => { console.log(’fetch failed!’) });

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 57 / 81

From ”Frontend” to ”Full Stack”
ECMAScript 2015 (ES6)
• Standardized JavaScript, resolving the ”library wars” chaos.
• The rise of open-source ecosystems fueled frontendinnovation.

Modern Frontend Technologies
• Frontend Frameworks: Angular, React, Vue
• Full Stack Development: Express.js, Next.js
• CSS Frameworks: Bootstrap, TailwindCSS
• Beyond the Browser: Electron (VS Code)

• Web technologies power desktop applications.
Frontend technologies are no longer just for browsers; they have
expanded to backend and even desktop applications!

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 58 / 81

The Wheels of History Rolling Forward
PC -> Web -> Web 2.0 (UGC) -> AI (AGI)

• Frameworks drive technological advancements.
• We need high-level abstractions to express real-world humanneeds.

• Simplicity and Clarity -> Attracts a large number of industrydevelopers.
• Flexibility and Generalization -> Enables the construction ofdiverse applications.

Standalone Computers -> Internet -> Mobile Computing -> ???
• Opportunities and Uncertainty
• Risks and Rewards

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 59 / 81

Concurrent Programming in HPC

• The World’s Most Expensive Sofa
• The First Supercomputer (1976)
• Single-processor system
• 138 million FLOPs (Floating PointOperations per Second)

• 40 times faster than IBM 370 at thetime
• Slightly better than embedded chipstoday

• Processed large data sets with oneinstruction First Supercomputer (CRAY-1 from LosAlamos National Laboratory in 1976)

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 60 / 81

Features of HPC

HPC
”A technology that harnesses the power of supercomputers orcomputer clusters to solve complex problems requiring massivecomputation.” (IBM)
• Computation-Centric

• System Simulation: Weather forecasting, energy, molecularbiology
• Artificial Intelligence: Neural network training
• Mining: Pure hash computation
• TOP 500 (https://www.top500.org/)

• No. 1

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 61 / 81

https://www.top500.org/
https://www.top500.org/system/180307/

Parallel Computing in HPC
Static Partitioning in Traditional Computation (Machine-ThreadTwo-Level Task Decomposition)

• The Producer-Consumer Model solves most problems.
• MPI – ”Message Passing Interface” for distributed computing.
• OpenMP – ”Multi-platform shared-memory parallelprogramming (C/C++ and Fortran).”

Example: OpenMP Parallelization
#pragma omp parallel num_threads(128)
for (int i = 0; i < 1024; i++) {

// Parallel execution
}

Challenges in HPC:
• Network latency, power consumption, stability, and scalability.
• Hardware-software toolchains.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 62 / 81

https://hpc-tutorials.llnl.gov/mpi/
https://www.openmp.org/

Example: Mandelbrot Set
• Z 2

n+1 = Z 2
n + C

• Each point in the Mandelbrot setiterates independently and isonly influenced by its complexcoordinate.
• Link of Code:Mandelbrot Set Code
• While the number of cores is not the only factor, it is the mostcritical factor for determining thread execution efficiency.
• Core count helps estimate the system’s computational capacityand parallel processing capabilities.
• Therefore, it is a key factor in HPC.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 63 / 81

https://github.com/xinliulab/CIS5370_Computer_Security/blob/main/lecture_code/concurrency/16_mandelbrot.c

Concurrent Programming in Data Centers

Google Data Center

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 64 / 81

Features of Data Center
Data Center
“A network of computing and storage resources that enable thedelivery of shared applications and data.” (CISCO)
• Data-Centric (Storage-Focused) Approach

• Originated from internet search (Google), social networks(Facebook/Twitter)
• Powers various internet applications: Gaming/Cloud Storage/WeChat/Alipay/...

• The Importance of Algorithms/Systems for HPC and DataCenters
• You manage 1,000,000 servers
• A 1% improvement in an algorithm or implementation can save10,000 servers

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 65 / 81

Main Challenges of Data Center
• Serving massive, geographically distributed requests
• Data must remain consistent (Consistency)
• Services must always be available (Availability)

• Must tolerate machine failures (Partition Tolerance)

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 66 / 81

We foucus on a single machine

How to Maximize Parallel Request Handling with a Single Machine
• Key Metrics: QPS, Tail Latency, ...

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 67 / 81

Maximizing Parallel Request Handling: Threads
Advantages:
• True parallelism with multiple cores, enabling multipleexecution flows.
• OS-level scheduling, allowing independent tasks to bemanaged efficiently by the operating system.
• Well-supported by most programming languages andoperating systems.

Disadvantages:
• Higher overhead due to system calls and context switching.
• Limited by the number of cores, potentially leading tocontention and inefficiencies with too many threads.
• Memory overhead due to thread stacks and system resources.
• Link of Code: Thread Example Code

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 68 / 81

https://github.com/xinliulab/CIS5370_Computer_Security/blob/main/lecture_code/concurrency/17_thread.py

Maximizing Parallel Request Handling: Coroutines

Advantages:
• More lightweight than threads, as they don’t require systemcalls or context switches.
• Link of Code: Coroutine Example Code

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 69 / 81

https://github.com/xinliulab/CIS5370_Computer_Security/blob/main/lecture_code/concurrency/18_coroutine.py

Why are Coroutines More Lightweight?
• User-Space Scheduling: Coroutines are managed in userspace and do not require kernel intervention, avoiding theoverhead of system calls.
• Minimal Context Switching: Switching between coroutinesrequires saving only a small amount of information:

• Execution Position: The point in the code where the coroutineyields or resumes (similar to the program counter in threads).
• Local Variables and Stack Frame: The current state of localvariables and the execution stack.

• Comparison with Threads: Threads require the operatingsystem to save and restore more extensive context:
• All CPU registers, including general-purpose and floating-pointregisters.
• Program counter and stack pointer, which determine theexecution position and stack location.
• Thread-specific kernel data structures, which manage thethread’s scheduling and other metadata.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 70 / 81

Disadvantages of Coroutines
• No true parallelism

• A single thread can only run one coroutine at a time.
• Although multiple coroutines can exist within the same thread,only one is active at any given moment.
• The quick switching between coroutines creates the illusion ofconcurrency.

• Blocking Operations:
• If a coroutine encounters a blocking operation (e.g., systemcalls), it blocks the entire thread.
• This means all other coroutines in the same thread are alsoblocked, causing a significant performance issue.

• Requires manual yielding: Developers must manually controlwhen a coroutine yields, which can lead to more complex codemanagement.
• Less well-supported: Coroutines are not as universallysupported across programming languages as threads.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 71 / 81

Maximizing Parallel Request Handling: Go
Goroutines = Threads + CoroutinesAdvantages:
• Extremely lightweight
• Enable true parallel execution on multiple cores
• Ideal for high-concurrency systems with minimal developermanagement

• Efficient CPU utilization, achieving near 100% performance
Disadvantages:
• Go runtime’s scheduling decisions are opaque, making itharder to control execution flow.
• Debugging and profiling goroutines can be more difficult dueto their lightweight nature and runtime control.
• Not available in all languages, limited to the Go ecosystem.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 72 / 81

Why Goroutines = Threads + Coroutines?

• When a Goroutine encounters a blocking system call:
• Automatically converts blocking system calls (e.g., file I/O) intonon-blocking operations.
• Moves the Goroutine off the current thread and schedulesanother Goroutine to continue execution.
• This ensures that no Goroutine blocks the entire system,maximizing concurrency.

• Link of Code: Goroutine Example Code

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 73 / 81

https://github.com/xinliulab/CIS5370_Computer_Security/blob/main/lecture_code/concurrency/go-examples

Concurrent Programmingin the Age of AI

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 74 / 81

NVIDIA DGX-1 (2016)
8 × Tesla V100: The Computational Core of DGX-1

• DGX-1 is a complete AI supercomputer designed by NVIDIA.
• It integrates 8 Tesla V100 GPUs into a single system.
• These GPUs are interconnected using NVSwitch, providinghigh-speed GPU-to-GPU communication (300GB/s).
• Compared to standalone GPUs, DGX-1 includes:

• 2 × Intel Xeon CPUs for coordination.
• 512GB DDR4 RAM for system memory.
• 15TB NVMe SSD for high-speed storage.
• Optimized power and cooling system (3.2kW powerconsumption).

• Performance: 170 TFLOPS @ 3.2kW
• Comparison: CRAY-1: 138 MFLOPS @ 115kW

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 75 / 81

NVIDIA DGX B200 (2024)
8 × Blackwell GPUs: The Computational Core of DGX B200

• DGX B200 is the latest AI supercomputer designed byNVIDIA.
• It integrates 8 Blackwell GPUs into a single system.
• These GPUs are interconnected using NVLink and NVSwitch,providing ultra-high-speed communication.
• Compared to standalone GPUs, DGX B200 includes:

• Optimized AI acceleration for large-scale training andinference.
• High-bandwidth memory (HBM) for faster data access.
• Advanced power and cooling solutions for efficient operation.

• Performance:
• 72 PFLOPS (Training), 144 PFLOPS (Inference) @ 14.3kW

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 76 / 81

Computation Behind Large Language Models

”Attention Is All You Need”

LLM Visualization

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 77 / 81

https://arxiv.org/pdf/1706.03762
https://bbycroft.net/llm

Single Compute-Intensive Slice (1): SIMD
Single Instruction, Multiple Data
• Tensor Instructions (Tensor Core): Mixed Precision

A × B + C

• A single instruction performs a 4 × 4 matrix operation.

• x86 SIMD Evolution:
• MMX (MultiMedia eXtension, 64-bit MM) → SSE (Streaming SIMDExtensions, 128-bit) → AVX (Advanced Vector eXtensions,256-bit) → AVX512 (512-bit)

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 78 / 81

Single Compute-Intensive Slice (2): SIMT
Single Instruction, Multiple Threads
• One PC (Program Counter) controls 32 execution flowssimultaneously.

• The number of logical threads can be even larger.
• Each execution flow has its own registers.

• Three registers (x , y , and z) are used to store the ”thread ID”.
• Then, a massive number of threads!

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 79 / 81

Takeaways

• Most of the synchronization problems you will face are justvariations of the Producer-Consumer problem.
• Mastering condition variables is enough to handle mostreal-world scenarios.
• The rest is just icing on the cake.

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 80 / 81

Takeaways
• Web

• Focus: Usability
• Pattern: Single Thread + Event Loop
• Technologies: Promise

• High-Performance Computing
• Focus: Task Decomposition
• Pattern: Producer-Consumer
• Technologies: MPI / OpenMP

• Data Centers
• Focus: System Calls
• Pattern: Threads-Coroutines
• Technologies: Goroutine

• AI
• Focus: Parallel Computation & Scalability
• Pattern: Data Parallelism + Model Parallelism
• Technologies: SIMIT / CUDA / TensorRT

Spinlock Producer-Consumer Condition Variables Semaphores Web HPC Data Center Takeaways 81 / 81

	Spinlock
	Producer-Consumer
	Condition Variables
	Semaphores
	Web
	HPC
	Data Center
	Takeaways

