
Caching and TLBs
Xin Liu

Operating Systems

COP 4610

Memory Architecture

Caching

• Stores copies of data at places that can be accessed more quickly
than accessing the original
• Speeds up access to frequently used data

• At a cost: slows down the infrequently used data

Caching in Memory Hierarchy

• Provides the illusion of TB storage
• With register access time

Access Time Size Cost

Primary memory Registers 1 clock cycle ~500 bytes On chip

Cache (L1/L2) 1-2 clock cycles < 10 MB

Main memory 1-4 clock cycles < 64 GB $3/GB

Secondary memory SSD 25-100 μsec < 2 TB $60/TB

Disk 5-10 msec < 16 TB $10/TB

Caching in Memory Hierarchy

• Exploits two hardware characteristics
• Smaller memory provides faster access times

• Large memory provides cheaper storage per byte

• Puts frequently accessed data in small, fast, and expensive memory

• Assumption: non-random program access behaviors

Locality in Access Patterns

• Temporal locality: recently referenced locations are more likely to
be referenced soon
• e.g., files

• Spatial locality: referenced locations tend to be clustered
• e.g., listing all files under a directory

Caching

• Does not work well for programs with little localities
• e.g., scanning the entire disk

• Leaves behind cache content with no localities (cache pollution)

Generic Issues in Caching

• Effective metrics
• Cache hit: a lookup is resolved by the content stored in cache

• Cache miss: a lookup is resolved elsewhere

• Effective access time
= P(hit)*(hit_cost) + P(miss)*(miss_cost)

Effective Access Time

• Cache hit rate: 99%
• Cost of checking: 2 clock cycles

• Cache miss rate: 1%
• Cost of going elsewhere: 4 clock cycles

• Effective access time:
• 99%*2 + 1%*(2 + 4)

= 1.98 + 0.06 = 2.04 (clock cycles)

Another Example of Effective Access Time

Access time Cache hit rate

L1 cache 1 clock cycle 50%

L2 cache 2 clock cycles 50%

Memory 4 clock cycles 100%

• Effective access time = TL1

= Phit*costhit + Pmiss*costmiss

Another Example of Effective Access Time

Access time Cache hit rate

L1 cache 1 clock cycle 50%

L2 cache 2 clock cycles 50%

Memory 4 clock cycles 100%

• Effective access time = TL1

= Phit*costhit + Pmiss*costmiss

= PL1_hit*costL1_hit + PL1_miss*costL1_miss

= 1/2*(1 cc) + 1/2*costL1_miss

= 1/2*(1 cc) + 1/2*(1 cc + TL2)

Another Example of Effective Access Time

Access time Cache hit rate

L1 cache 1 clock cycle 50%

L2 cache 2 clock cycles 50%

Memory 4 clock cycles 100%

• TL2

= Phit*costhit + Pmiss*costmiss

= PL2_hit*costL2_hit + PL2_miss*costL2_miss

= 1/2*(2 cc) + 1/2*costL2_miss

= 1/2*(2 cc) + 1/2*(2 cc + 4 cc) = 1 + 3 = 4

Another Example of Effective Access Time

Access time Cache hit rate

L1 cache 1 clock cycle 50%

L2 cache 2 clock cycles 50%

Memory 4 clock cycles 100%

• Effective access time = TL1

= 1/2*(1 cc) + 1/2*(1 cc + TL2)

= 1/2*(1 cc) + 1/2*(1 cc + 4 cc)

= 1/2 + 5/2 = 6/2 = 3

Another Example of Effective Access Time

Access time Cache hit rate

L1 cache 1 clock cycle 50%

L2 cache 2 clock cycles 50%

Memory 4 clock cycles 100%

L1

hit

50%

1 cycle
50%

1 cycle

L2
50%

2 cycles

hit

50%

2 cycles

memory

hit

100%

4 cycles

Another Example of Effective Access Time

• Effective access time = 1/2*1
+ 1/2*1/2(1 + 2)

+ 1/2*1/2*1*(1 + 2 + 4)

L1

hit

50%

1 cycle
50%

1 cycle

L2
50%

2 cycles

hit

50%

2 cycles

memory

hit

100%

4 cycles

Another Example of Effective Access Time

• Effective access time = 1/2*1
+ 1/2*1/2(1 + 2)

+ 1/2*1/2*1*(1 + 2 + 4)

= 2/4 + 3/4 + 7/4

= 12/4 = 3

Another Example of Effective Access Time

• Bottom up approach
• Effective access time of memory

= 4*100% = 4

• Effective access time of memory w/ L2 cache
= 1/2*2 +1/2*(2 + 4) = 1/2 + 6/2 = 4

• Effective access time of memory w/ L1/L2 caches
= 1/2*1 + 1/2(1 + 4)

= 1/2 + 5/2 = 6/2 = 3

Reasons for Cache Misses

• Compulsory misses: data brought into the cache for the first time
• e.g., booting

• Capacity misses: caused by the limited size of a cache
• A program may require a hash table that exceeds the cache capacity

• Random access pattern

• No caching policy can be effective

Reasons for Cache Misses

• Misses due to competing cache entries: a cache entry assigned to
two pieces of data
• When both active

• Each will preempt the other

• Policy misses: caused by cache replacement policy, which chooses
which cache entry to replace when the cache is full

C-3P0?

• Compulsory misses

• Capacity misses

• Competing cache entries

• Policy misses

Design Issues of Caching

• How is a cache entry lookup performed?

• Which cache entry should be replaced when the cache is full?

• How to maintain consistency between the cache copy and the real
data?

Caching Applied to Address Translation

• Process references the same page repeatedly
• Translating each virtual address to physical address is wasteful

• Translation lookaside buffer (TLB)
• Tracks frequently used translations

• Avoids translations in the common case

Caching Applied to Address Translation

Virtual

addresses

Physical

addresses

Data reads or writes

(untranslated)

TLB

Translation table

In TLB

Example of the TLB Content

Virtual page number (VPN) Physical page number (PPN) Control bits

2 1 Valid, rw

- - Invalid

0 4 Valid, rw

TLB Lookups

• Sequential search of the TLB table

• Direct mapping: assigns each virtual page to a specific slot in the
TLB
• e.g., use upper bits of VPN to index TLB

Direct Mapping

if (TLB[UpperBits(vpn)].vpn == vpn) {

return TLB[UpperBits(vpn)].ppn;

} else {

ppn = PageTable[vpn];

TLB[UpperBits(vpn)].control = INVALID;

TLB[UpperBits(vpn)].vpn = vpn;

TLB[UpperBits(vpn)].ppn = ppn;

TLB[UpperBits(vpn)].control = VALID | RW

return ppn;

}

Direct Mapping

• When use only high order bits
• Two pages may compete for the same TLB entry

• May toss out needed TLB entries

• When use only low order bits
• TLB reference will be clustered

• Failing to use full range of TLB entries

• Common approach: combine both

TLB Lookups

• Sequential search of the TLB table

• Direct mapping: assigns each virtual page to a specific slot in the
TLB
• e.g., use upper bits of VPN to index TLB

• Set associativity: uses N TLB banks to perform lookups in parallel

Two-Way Associative Cache

VPN

VPN PPN

VPN PPN

VPN PPN

VPN PPN

VPN PPN

VPN PPN

hash

= =

Two-Way Associative Cache

VPN

VPN PPN

VPN PPN

VPN PPN

VPN PPN

VPN PPN

VPN PPN

hash

= =

Two-Way Associative Cache

VPN

VPN PPN

VPN PPN

VPN PPN

VPN PPN

VPN PPN

VPN PPN

hash

= =

If miss, translate and replace one of the entries

TLB Lookups

• Direct mapping: assigns each virtual page to a specific slot in the
TLB
• e.g., use upper bits of VPN to index TLB

• Set associativity: use N TLB banks to perform lookups in parallel

• Fully associative cache: allows looking up all TLB entries in parallel

Fully Associative Cache

VPN

VPN PPN VPN PPN

hash

VPN PPN

= = =

Fully Associative Cache

VPN

VPN PPN VPN PPN

hash

VPN PPN

= = =

Fully Associative Cache

VPN

VPN PPN VPN PPN

hash

VPN PPN

= = =

If miss, translate and replace one of the entries

TLB Lookups

• Typically
• TLBs are small and fully associative

• Hardware caches (L1/L2) use direct mapped or set-associative cache

Relationship Between TLB and HW Memory
Caches
• We can extend the principle of TLB

• Virtually addressed cache: between the CPU and the translation
tables

• Physically addressed cache: between the translation tables and the
main memory

Relationship Between TLB and HW Memory
Caches

Data reads or writes

(untranslated)

VA data

VA data

Virtually

addressed cache

TLB PA data

PA data

Physically

addressed cache

PA data

PA dataPA data

PA data

Translation

tables

Consistency between TLB and Page Tables

• Different processes have different page tables
• TLB entries are invalidated on context switches

• Alternatives:
• Tag TLB entries with process IDs

• Additional cost of hardware and comparisons per lookup

Replacement of TLB Entries

• Direct mapping
• Entry replaced whenever a VPN mismatches

• Associative caches
• Random replacement

• LRU (least recently used)

• MRU (most recently used)

• Depending on reference patterns

Replacement of TLB Entries

• Hardware-level
• TLB replacement is mostly random

• Simple and fast

• Software-level
• Memory page replacements are more sophisticated

• CPU cycles vs. cache hit rate

Two Ways to Commit Data Changes

• Write-through: Immediately writes updated data from the cache
back to memory as soon as the cache is modified.
• Ensures data in cache and memory is always consistent.

• Typically used for critical data where immediate consistency is important.

Two Ways to Commit Data Changes

• Write-back: Delays writing data from the cache to memory until
the cache block is evicted or replaced.
• Reduces the number of write operations to memory by combining multiple

updates.

• More efficient for frequent updates, but the data in memory may be out of
sync until the write-back occurs.

Meltdown & Spectre Attacks

Overview

• An analogy

• CPU cache and use it as side channel

• Meltdown attack

• Spectre attack

Microsoft Interview Question

Stealing A Secret

Secret: 7

Guard with

Memory

Eraser

Restricted Room

CPU Cache

From Lights to CPU Cache

Question

You just learned a secret number 7, and you want to keep it. However,
your memory will be erased and whatever you do will be rolled back
(except the CPU cache). How do you recall the secret after your
memory about this secret number is erased?

Using CPU Cache to Remember Secret

The FLUSH+RELOAD Technique

FLUSH:

Flush the

CPU Cache

RELOAD:

Check which one

is in the cache

Access memory

location at S

Secret S

FLUSH+RELOAD: The FLUSH Step

Flush the CPU Cache

FLUSH+RELOAD: The RELOAD Step

The Meltdown Attack

The Security Room and Guard

Staying Alive: Exception Handling in C

Out-Of-Order Execution

Out-of-Order Execution

How do I prove that the out-of-order
execution has happened?

Out-of-Order Execution Experiment

Evidence of out-of-order

execution

Meltdown Attack: A Naïve Approach

Improvement: Get Secret Cached

Why does this help?

Improve the Attack Using Assembly Code

Execution Results

Improve the Attack Using Statistic Approach

Countermeasures

• Fundamental problem is in the CPU hardware
• Expensive to fix

• Develop workaround in operating system

• KASLR (Kernel Address Space Layout Randomization)
• Does not map any kernel memory in the user space, except for some parts

required by the x86 architecture (e.g., interrupt handlers)

• User-level programs cannot directly use kernel memory addresses, as such
addresses cannot be resolved

The Spectre Attack

Will It Be Executed?

Will Line 3 be executed if x > size ?

Out-Of-Order Execution

Let’s Find a Proof

FLUSH

Flush the

CPU Cache

RELOAD

Check which one is

in the cache

Invoke

victim(97)

size is 10

Not always working though

Training

Train CPU to go

to the true branch

Evidence

Target of the Attack

This protection pattern is widely

used in software sandbox (such as those

implemented inside browsers)

The Spectre Attack
spectreAttack(int larger_x)

Attack Result

Why is 0 in
the cache?

Success

Spectre Variant and Mitigation

• Since it was discovered in 2017, several Spectre variants have been
found

• Affecting Intel, ARM, and ARM

• The problem is in hardware

• Unlike Meltdown, there is no easy software workaround

Summary

• Stealing secrets using side channels

• Meltdown attack

• Spectre attack

• A form of race condition vulnerability

• Vulnerabilities are inside hardware
• AMD, Intel, and ARM are affected

	Slide 1: Caching and TLBs
	Slide 2: Memory Architecture
	Slide 3: Caching
	Slide 4: Caching in Memory Hierarchy
	Slide 5: Caching in Memory Hierarchy
	Slide 6: Locality in Access Patterns
	Slide 7: Caching
	Slide 8: Generic Issues in Caching
	Slide 9: Effective Access Time
	Slide 10: Another Example of Effective Access Time
	Slide 11: Another Example of Effective Access Time
	Slide 12: Another Example of Effective Access Time
	Slide 13: Another Example of Effective Access Time
	Slide 14: Another Example of Effective Access Time
	Slide 15: Another Example of Effective Access Time
	Slide 16: Another Example of Effective Access Time
	Slide 17: Another Example of Effective Access Time
	Slide 18: Reasons for Cache Misses
	Slide 19: Reasons for Cache Misses
	Slide 20: C-3P0?
	Slide 21: Design Issues of Caching
	Slide 22: Caching Applied to Address Translation
	Slide 23: Caching Applied to Address Translation
	Slide 24: Example of the TLB Content
	Slide 25: TLB Lookups
	Slide 26: Direct Mapping
	Slide 27: Direct Mapping
	Slide 28: TLB Lookups
	Slide 29: Two-Way Associative Cache
	Slide 30: Two-Way Associative Cache
	Slide 31: Two-Way Associative Cache
	Slide 32: TLB Lookups
	Slide 33: Fully Associative Cache
	Slide 34: Fully Associative Cache
	Slide 35: Fully Associative Cache
	Slide 36: TLB Lookups
	Slide 37: Relationship Between TLB and HW Memory Caches
	Slide 38: Relationship Between TLB and HW Memory Caches
	Slide 39: Consistency between TLB and Page Tables
	Slide 40: Replacement of TLB Entries
	Slide 41: Replacement of TLB Entries
	Slide 42: Two Ways to Commit Data Changes
	Slide 43: Two Ways to Commit Data Changes
	Slide 44: Meltdown & Spectre Attacks
	Slide 45: Overview
	Slide 46: Microsoft Interview Question
	Slide 47: Stealing A Secret
	Slide 48: CPU Cache
	Slide 49: From Lights to CPU Cache
	Slide 50: Using CPU Cache to Remember Secret
	Slide 51: The FLUSH+RELOAD Technique
	Slide 52: FLUSH+RELOAD: The FLUSH Step
	Slide 53: FLUSH+RELOAD: The RELOAD Step
	Slide 54: The Meltdown Attack
	Slide 55: The Security Room and Guard
	Slide 56: Staying Alive: Exception Handling in C
	Slide 57: Out-Of-Order Execution
	Slide 58: Out-of-Order Execution
	Slide 59: Out-of-Order Execution Experiment
	Slide 60: Meltdown Attack: A Naïve Approach
	Slide 61: Improvement: Get Secret Cached
	Slide 62: Improve the Attack Using Assembly Code
	Slide 63: Improve the Attack Using Statistic Approach
	Slide 64: Countermeasures
	Slide 65: The Spectre Attack
	Slide 66: Will It Be Executed?
	Slide 67: Out-Of-Order Execution
	Slide 68: Let’s Find a Proof
	Slide 69: Target of the Attack
	Slide 70: The Spectre Attack
	Slide 71: Attack Result
	Slide 72: Spectre Variant and Mitigation
	Slide 73: Summary

