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Memory Architecture



Caching

• Stores copies of data at places that can be accessed more quickly 
than accessing the original
• Speeds up access to frequently used data

• At a cost:  slows down the infrequently used data



Caching in Memory Hierarchy

• Provides the illusion of TB storage
• With register access time

Access Time Size Cost

Primary memory Registers 1 clock cycle ~500 bytes On chip

Cache (L1/L2) 1-2 clock cycles < 10 MB

Main memory 1-4 clock cycles < 64 GB $3/GB

Secondary memory SSD 25-100 μsec < 2 TB $60/TB

Disk 5-10 msec < 16 TB $10/TB



Caching in Memory Hierarchy

• Exploits two hardware characteristics
• Smaller memory provides faster access times

• Large memory provides cheaper storage per byte

• Puts frequently accessed data in small, fast, and expensive memory

• Assumption:  non-random program access behaviors



Locality in Access Patterns

• Temporal locality: recently referenced locations are more likely to 
be referenced soon
• e.g., files

• Spatial locality: referenced locations tend to be clustered
• e.g., listing all files under a directory



Caching

• Does not work well for programs with little localities
• e.g., scanning the entire disk

• Leaves behind cache content with no localities (cache pollution)



Generic Issues in Caching

• Effective metrics
• Cache hit: a lookup is resolved by the content stored in cache

• Cache miss: a lookup is resolved elsewhere

• Effective access time
= P(hit)*(hit_cost) + P(miss)*(miss_cost)



Effective Access Time

• Cache hit rate:  99%
• Cost of checking:  2 clock cycles

• Cache miss rate:  1%
• Cost of going elsewhere:  4 clock cycles

• Effective access time:
• 99%*2 + 1%*(2 + 4) 

= 1.98 + 0.06 = 2.04 (clock cycles)



Another Example of Effective Access Time

Access time Cache hit rate

L1 cache 1 clock cycle 50%

L2 cache 2 clock cycles 50%

Memory 4 clock cycles 100%

• Effective access time = TL1

= Phit*costhit + Pmiss*costmiss



Another Example of Effective Access Time

Access time Cache hit rate

L1 cache 1 clock cycle 50%

L2 cache 2 clock cycles 50%

Memory 4 clock cycles 100%

• Effective access time = TL1

= Phit*costhit + Pmiss*costmiss

= PL1_hit*costL1_hit + PL1_miss*costL1_miss

= 1/2*(1 cc) + 1/2*costL1_miss

= 1/2*(1 cc) + 1/2*(1 cc + TL2)



Another Example of Effective Access Time

Access time Cache hit rate

L1 cache 1 clock cycle 50%

L2 cache 2 clock cycles 50%

Memory 4 clock cycles 100%

• TL2

= Phit*costhit + Pmiss*costmiss

= PL2_hit*costL2_hit + PL2_miss*costL2_miss

= 1/2*(2 cc) + 1/2*costL2_miss

= 1/2*(2 cc) + 1/2*(2 cc + 4 cc) = 1 + 3 = 4 



Another Example of Effective Access Time

Access time Cache hit rate

L1 cache 1 clock cycle 50%

L2 cache 2 clock cycles 50%

Memory 4 clock cycles 100%

• Effective access time = TL1

= 1/2*(1 cc) + 1/2*(1 cc + TL2)

= 1/2*(1 cc) + 1/2*(1 cc + 4 cc)

= 1/2 + 5/2 = 6/2 = 3



Another Example of Effective Access Time

Access time Cache hit rate

L1 cache 1 clock cycle 50%

L2 cache 2 clock cycles 50%

Memory 4 clock cycles 100%

L1

hit
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1 cycle
50%
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50%
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Another Example of Effective Access Time

• Effective access time = 1/2*1 
+ 1/2*1/2(1 + 2) 

+ 1/2*1/2*1*(1 + 2 + 4)
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hit

50%

1 cycle
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memory
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Another Example of Effective Access Time

• Effective access time = 1/2*1 
+ 1/2*1/2(1 + 2) 

+ 1/2*1/2*1*(1 + 2 + 4)

= 2/4 + 3/4 + 7/4

= 12/4 = 3



Another Example of Effective Access Time

• Bottom up approach
• Effective access time of memory 

= 4*100% = 4

• Effective access time of memory w/ L2 cache
= 1/2*2 +1/2*(2 + 4) = 1/2 + 6/2 = 4 

• Effective access time of memory w/ L1/L2 caches
= 1/2*1 + 1/2(1 + 4) 

= 1/2 + 5/2 = 6/2 = 3



Reasons for Cache Misses

• Compulsory misses: data brought into the cache for the first time
• e.g., booting

• Capacity misses: caused by the limited size of a cache
• A program may require a hash table that exceeds the cache capacity

• Random access pattern

• No caching policy can be effective



Reasons for Cache Misses

• Misses due to competing cache entries: a cache entry assigned to 
two pieces of data
• When both active

• Each will preempt the other

• Policy misses: caused by cache replacement policy, which chooses 
which cache entry to replace when the cache is full



C-3P0?

• Compulsory misses

• Capacity misses

• Competing cache entries

• Policy misses



Design Issues of Caching

• How is a cache entry lookup performed?

• Which cache entry should be replaced when the cache is full?

• How to maintain consistency between the cache copy and the real 
data?



Caching Applied to Address Translation

• Process references the same page repeatedly
• Translating each virtual address to physical address is wasteful

• Translation lookaside buffer (TLB)
• Tracks frequently used translations

• Avoids translations in the common case



Caching Applied to Address Translation

Virtual 

addresses

Physical

addresses

Data reads or writes

(untranslated)

TLB

Translation table

In TLB



Example of the TLB Content

Virtual page number (VPN) Physical page number (PPN) Control bits

2 1 Valid, rw

- - Invalid

0 4 Valid, rw



TLB Lookups

• Sequential search of the TLB table

• Direct mapping: assigns each virtual page to a specific slot in the 
TLB
• e.g., use upper bits of VPN to index TLB



Direct Mapping

if (TLB[UpperBits(vpn)].vpn == vpn) {

return TLB[UpperBits(vpn)].ppn;

} else {

ppn = PageTable[vpn];

TLB[UpperBits(vpn)].control = INVALID;

TLB[UpperBits(vpn)].vpn = vpn;

TLB[UpperBits(vpn)].ppn = ppn;

TLB[UpperBits(vpn)].control = VALID | RW

return ppn;

}



Direct Mapping

• When use only high order bits
• Two pages may compete for the same TLB entry

• May toss out needed TLB entries

• When use only low order bits
• TLB reference will be clustered

• Failing to use full range of TLB entries

• Common approach:  combine both



TLB Lookups

• Sequential search of the TLB table

• Direct mapping: assigns each virtual page to a specific slot in the 
TLB
• e.g., use upper bits of VPN to index TLB

• Set associativity: uses N TLB banks to perform lookups in parallel



Two-Way Associative Cache
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Two-Way Associative Cache
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Two-Way Associative Cache

VPN

VPN PPN

VPN PPN

VPN PPN

VPN PPN

VPN PPN

VPN PPN

hash

= =

If miss, translate and replace one of the entries



TLB Lookups

• Direct mapping: assigns each virtual page to a specific slot in the 
TLB
• e.g., use upper bits of VPN to index TLB

• Set associativity: use N TLB banks to perform lookups in parallel

• Fully associative cache: allows looking up all TLB entries in parallel



Fully Associative Cache

VPN

VPN PPN VPN PPN

hash

VPN PPN

= = =



Fully Associative Cache
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Fully Associative Cache
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VPN PPN

= = =

If miss, translate and replace one of the entries



TLB Lookups

• Typically
• TLBs are small and fully associative

• Hardware caches (L1/L2) use direct mapped or set-associative cache



Relationship Between TLB and HW Memory 
Caches
• We can extend the principle of TLB

• Virtually addressed cache: between the CPU and the translation 
tables

• Physically addressed cache: between the translation tables and the 
main memory



Relationship Between TLB and HW Memory 
Caches

Data reads or writes

(untranslated)

VA data

VA data

Virtually 

addressed cache

TLB PA data

PA data

Physically 

addressed cache

PA data

PA dataPA data

PA data

Translation 

tables



Consistency between TLB and Page Tables

• Different processes have different page tables
• TLB entries are invalidated on context switches

• Alternatives:
• Tag TLB entries with process IDs

• Additional cost of hardware and comparisons per lookup



Replacement of TLB Entries

• Direct mapping
• Entry replaced whenever a VPN mismatches

• Associative caches
• Random replacement

• LRU (least recently used)

• MRU (most recently used)

• Depending on reference patterns



Replacement of TLB Entries

• Hardware-level
• TLB replacement is mostly random

• Simple and fast

• Software-level
• Memory page replacements are more sophisticated

• CPU cycles vs. cache hit rate



Two Ways to Commit Data Changes

• Write-through: Immediately writes updated data from the cache 
back to memory as soon as the cache is modified.
• Ensures data in cache and memory is always consistent.

• Typically used for critical data where immediate consistency is important.



Two Ways to Commit Data Changes

• Write-back: Delays writing data from the cache to memory until 
the cache block is evicted or replaced.
• Reduces the number of write operations to memory by combining multiple 

updates.

• More efficient for frequent updates, but the data in memory may be out of 
sync until the write-back occurs.



Meltdown & Spectre Attacks



Overview

• An analogy

• CPU cache and use it as side channel

• Meltdown attack

• Spectre attack



Microsoft Interview Question



Stealing A Secret

Secret: 7

Guard with 

Memory 

Eraser

Restricted Room



CPU Cache



From Lights to CPU Cache

Question

You just learned a secret number 7, and you want to keep it. However, 
your memory will be erased and whatever you do will be rolled back 
(except the CPU cache). How do you recall the secret after your 
memory about this secret number is erased?



Using CPU Cache to Remember Secret



The FLUSH+RELOAD Technique

FLUSH:

Flush the 

CPU Cache

RELOAD:

Check which one 

is in the cache

Access memory 

location at S

Secret S



FLUSH+RELOAD: The FLUSH Step

Flush the CPU Cache



FLUSH+RELOAD: The RELOAD Step



The Meltdown Attack



The Security Room and Guard



Staying Alive: Exception Handling in C



Out-Of-Order Execution



Out-of-Order Execution

How do I prove that the out-of-order 
execution has happened? 



Out-of-Order Execution Experiment

Evidence of out-of-order 

execution



Meltdown Attack: A Naïve Approach



Improvement: Get Secret Cached

Why does this help? 



Improve the Attack Using Assembly Code

Execution Results



Improve the Attack Using Statistic Approach



Countermeasures

• Fundamental problem is in the CPU hardware
• Expensive to fix

• Develop workaround in operating system

• KASLR (Kernel Address Space Layout Randomization)
• Does not map any kernel memory in the user space, except for some parts 

required by the x86 architecture (e.g., interrupt handlers)

• User-level programs cannot directly use kernel memory addresses, as such 
addresses cannot be resolved



The Spectre Attack



Will It Be Executed?

Will Line 3 be executed if x > size ?



Out-Of-Order Execution



Let’s Find a Proof

FLUSH

Flush the 

CPU Cache

RELOAD

Check which one is 

in the cache

Invoke

victim(97)

size is 10

Not always working though

Training

Train CPU to go 

to the true branch

Evidence



Target of the Attack

This protection pattern is widely 

used in software sandbox (such as those 

implemented inside browsers)



The Spectre Attack
spectreAttack(int larger_x)



Attack Result

Why is 0 in 
the cache?

Success



Spectre Variant and Mitigation

• Since it was discovered in 2017, several Spectre variants have been 
found

• Affecting Intel, ARM, and ARM

• The problem is in hardware

• Unlike Meltdown, there is no easy software workaround



Summary

• Stealing secrets using side channels

• Meltdown attack

• Spectre attack

• A form of race condition vulnerability

• Vulnerabilities are inside hardware
• AMD, Intel, and ARM are affected
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