
Memory Protection and

Address Translation

Xin Liu

Operating Systems

COP 4610

This Lecture…

▪ Different address translation schemes

▪ Base-and-bound translation

▪ Segmentation

▪ Paging

▪ Multi-level translation

▪ Paged page tables

▪ Hashed page tables

▪ Inverted page tables

▪ Dual-mode Operations

Memory Architecture

Memory Addresses

▪ Memory is byte-addressable

▪ Each memory address can specify the

location of a byte

▪ unsigned char memory[MEMORY_SIZE]

▪ To access

▪ memory[virtual_memory_address]

Up to This Point

▪ Threads provide the illusion of an infinite

number of CPUs

▪ On a single processor machine

▪ Memory management provides a different

set of illusions

▪ Protected memory

▪ Infinite amount of memory

▪ Transparent sharing

Physical vs. Virtual Memory

Physical memory

No protection

Limited size

Sharing visible to

processes

Physical vs. Virtual Memory

Physical memory Virtual memory

No protection Each process isolated

from others and from OS

Limited size Illusion of infinite

memory

Sharing visible to

processes

Each process cannot tell

if memory is shared

Memory Organizations

▪ Simplest: uniprogramming without

memory protection

▪ Each application runs within a hardwired

range of physical memory addresses

▪ One application runs at a time

▪ Application can use the same physical

addresses every time, across reboots

▪ E.g., Embedded System

Uniprogramming Without Memory

Protection

▪ Applications typically use the lower

memory addresses

▪ An OS uses the higher memory addresses

▪ An application can address any physical

memory location (may cause an OS crash)

000000 ffffff

Physical memory

Application Operating system

Multiprogramming Without

Memory Protection

▪ When a program is copied into memory, a

linker-loader alters the code of the

program (e.g., loads, stores, and jumps)

▪ To use the address of where the program

lands in memory

Multiprogramming Without Memory

Protection

▪ Bugs in any program can cause other

programs to crash, even the OS

000000 ffffff

Physical memory

Application 1 Operating systemApplication 2

Multiprogrammed OS With

Memory Protection

▪ Memory protection keeps user programs

from crashing one another and the OS

▪ Two hardware-supported mechanisms

▪ Address translation

▪ Dual-mode operation

Address Translation

▪ Each process is associated with an
address space, or all the physical
addresses a process can touch

▪ However, each process believes that it
owns the entire memory, starting with the
virtual address 0

▪ The missing piece is a translation table

▪ Translate every memory reference from
virtual to physical addresses

Address Translation Visualized

Virtual

addresses

Physical

addresses

Translation table

Data reads or writes

(untranslated)

Unidirectional

More on Address Translations

▪ Translation provides protection

▪ Processes cannot talk about other processes’

addresses, nor about the OS addresses

▪ OS uses physical addresses directly

▪ No translations

Assumptions

▪ 32-bit machines

▪ 1-GB RAM max

Base-and-Bound Translation

▪ Each process is loaded into a contiguous

region of physical memory

▪ Processes are protected from one another

Virtual address Physical address

Base

+

Error>

Bound

Base-and-Bound Translation

▪ Each process “thinks” that it owns a

dedicated machine, with memory

addresses from 0 to bound

code

data

…

stack

Virtual addresses Physical addresses
0

bound

code

data

…

stack

base = 6250

6250 + bound

Base-and-Bound Translation

▪ An OS can move a process around

▪ By copying bits

▪ Changing the base and bound registers

Pros/Cons of Base-and-Bound

Translation

+ Simplicity

+ Speed

- External fragmentation: memory wasted

because the available memory is not

contiguous for allocation

- Difficult to share programs

▪ Each instance of a program needs to have a

copy of the code segment

Pros/Cons of Base-and-Bound

Translation

- Memory allocation is complex

▪ Need to find contiguous chunks of free

memory

▪ First fit: Use the first free memory region that is

big enough

▪ Best fit: Use the smallest free memory region

▪Worst fit: Use the largest free memory region

▪ Reorganization involves copying

- Does not work well when address spaces

grow and shrink dynamically

Segmentation

▪ Segment: a logically contiguous memory

region

▪ Segmentation-based translation: use a

table of base-and-bound pairs

Segmentation Illustrated
Virtual addresses Physical addresses

code

0x4000

0x46ff

0x0

0x6ff

code

data
0x1000

0x14ff

data
0x0

0x4ff

stack

0x3000

0x3fff

stack

0x2000

0x2fff

Segmentation Diagram

Virt seg # Offset Phy addr

Physical seg base Seg bound

Physical seg base Seg bound

Physical seg base Seg bound

+

Error>

log2(1GB) = 30 bits for 1GB of RAM

30 bits up to 30 bits

up to 30 bits

32 - 30 = 2 bits

for 32-bit machines

22 entries

Segmentation Diagram

2 0x80000200

>

0x2200

0x4000 0x700

0x0 0x500

0x2000 0x1000

+

code

data

stack

00

01

10

1000 0000 0000 0000 0000 0010 0000 0000

Segmentation Diagram

2 0x40000100

>

?

0x4000 0x700

0x0 0x500

0x2000 0x1000

+

code

data

stack

00

01

10

Segmentation Diagram

2 0x00000800

>

?

0x4000 0x700

0x0 0x500

0x2000 0x1000

+

code

data

stack

00

01

10

Segmentation Translation

▪ virtual_address =

virtual_segment_number:offset

▪ physical_base_address =

segment_table[virtual_segment_number]

▪ physical_address =

physical_base_address + offset

Pros/Cons of Segmentation

+ Easier to grow/shrink individual segments

+ Finer control of segment accesses

▪ e.g., read-only for shared code segment

▪ Recall the semantics of fork()…

+ More efficient use of physical space

+ Multiple processes can share the same
code segment

- Memory allocation is still complex

▪ Requires contiguous allocation

Paging

▪ Paging-based translation: memory

allocation via fixed-size chunks of memory,

or pages

▪ Uses a bitmap to track the allocation

status of memory pages

▪ Translation granularity is a page

Paging Illustrated
Virtual addresses Physical addresses

0x0

0x1000

0x2000

0x0

0x3000

0x3fff

0x1000

0x2000

0x3000

0x4000

Paged Memory Acces

unsigned char memory[N_PAGES][PAGE_SIZE]

▪ To access

▪ memory[virtual_page_number][page_offset]

Paging Diagram

Virtual page number Offset

Physical page number

Physical page number

Physical page number

Physical page number Offset

Page table size

>

Error

32 – 12 = 20 bits for 32-bit machines

log2(1GB) = 30 bits for 1GB of RAM

log2(4KB) = 12 bits for 4-KB pages

220 entries

Paging Example

00x00000400 2

>

0000 0000 0000 0000 0000 0100 0000 0000

00004

00000

00002

40x00004400

0

1

2

…0000

…0001

…0010

Paging Example

00x00001200 2

>

00004

00000

00002

4 ?

0

1

2

…0000

…0001

…0010

Paging Example

00x00002500 2

>

00004

00000

00002

4 ?

0

1

2

…0000

…0001

…0010

Paging Translation

▪ virtual_address =

virtual_page_number:offset

▪ physical_page_number =

page_table[virtual_page_number]

▪ physical_address =

physical_page_number:offset

Pros and Cons of Paging

+ Easier memory allocation

+ Allows code sharing

- Internal fragmentation: allocated pages

are not fully used

- Page table can potentially be very large

▪ 32-bit architecture with 1-KB pages can

require 4M table entries

Multi-Level Translation

▪ Segmented-paging translation: breaks

the page table into segments

▪ Paged page tables: Two-level tree of

page tables

Segmented Paging

30 bits for 1-GB RAM 32 - 3 - 12 = 17 bits

12 bits for 4-KB pages

23 entries

Seg # OffsetVirt page #

log2(6 segments)

= 3 bits

Error>

18 bits

num of

entries

defined by

bound; up

to 217

entries

+

Page table base Page table bound

Page table base Page table bound

Page table base Page table bound

Phy page #

Phy page #

Phy page #

Segmented Paging

Page table size

>

Error

Seg # OffsetVirt page #

21732 – 3 – 12 = 17 bits

Phy page # Offset

Phy page #

Phy page #

Phy page #

log2(1GB) = 30 bits for 1GB of RAM

Segmented Paging Example

001 … 001100 … 0010

Error>

0x20002003

0 0000 0000 0000 0010

0000 0000 0011

+

0x00000000 0x16

0x00003000 0x1000

0x50000000 0x20

Phy page #

Phy page #

Phy page #

000

001

010

Page table

segment number

Page table

segment starting

address

Number of page

table entries

0x00003000

Segmented Paging

0x1000

>

Error

001 … 0011… 0010

0x20002003

0x70008 0x003

0x70000

0x70004

0x70008

00

01

10

Page table

Entry number

0 0000 0000 0000 0010
0000 0000 0011

Segmented Paging Example

? ??

Error>

0x21002005

? ?

+

0x00000000 0x16

0x00003000 0x1000

0x50000000 0x20

Phy page #

Phy page #

Phy page #

Page table

segment number

Page table

segment starting

address

Number of page

Table entries

0x00003000

000

001

010

Segmented Paging Example

001 … 0101

Error>

0x21002005

0 0001 0000 0000 0010

0000 0000 0101

+

0x00000000 0x16

0x00003000 0x1000

0x50000000 0x20

Phy page #

Phy page #

Phy page #

Page table

segment number

Page table

segment starting

address

Number of page

Table entries

0x00003000

000

001

010

Segmented Paging Translation

▪ virtual_address =

segment_number:page_number:offset

▪ page_table =

segment_table[segment_number]

▪ physical_page_number =

 page_table[virtual_page_number]

▪ physical_address =

physical_page_number:offset

Pros/Cons of Segmented Paging

+ Code sharing

+ Reduced memory requirements for page

tables

- Higher overhead and complexity

- Page tables still need to be contiguous

- Two lookups per memory reference

Paged Page Tables

Page table num OffsetVirt page num

Page table address (30 bits)

Page table address

Page table address

Phy page num

Phy page num

Phy page num

Phy page num (18 bits) Offset

12 bits for 4-KB pages12 bits

212

entries

28

entries

Paged Page Table Translation

▪ virtual_address =

page_table_num:virtual_page_num:offset

▪ page_table =

page_table_address[page_table_num]

▪ physical_page_num =

page_table[virtual_page_num]

▪ physical_address =

physical_page_num:offset

Pros/Cons of Paged Page Tables

+ Can be generalized into multi-level paging

- Multiple memory lookups are required to

translate a virtual address

▪ Can be accelerated with translation

lookaside buffers (TLBs)

▪ Store recently translated memory addresses for

short-term reuses

Hashed Page Tables

▪ Physical_address

= hash(virtual_page_num):offset

+ Conceptually simple

- Need to handle collisions

- Need one hash table per address space

Inverted Page Table

▪ One hash entry per physical page

▪ physical_address

= hash(pid, virtual_page_num):offset

+ The number of page table entries is

proportional to the size of physical RAM

- Collision handling

Dual-mode Operation Revisited

▪ Translation tables offer protection if they

cannot be altered by applications

▪ An application can only touch its address

space under the user mode

▪ HW requires the CPU to be in the kernel

mode to modify the address translation

tables

Details of Dual-mode Operations

▪ How the CPU is shared between the

kernel and user processes

▪ How processes interact among

themselves

Switching from the Kernel to User

Mode

▪ To run a user program, the kernel

▪ Creates a process and initialize the address
space

▪ Loads the program into the memory

▪ Initializes translation tables

▪ Sets the HW pointer to the translation table

▪ Sets the CPU to user mode

▪ Jumps to the entry point of the program

To Run a Program

User level

Kernel level

Translation table

Hardware pointer

user mode

PC

jump

Switching from User Mode to

Kernel Mode

▪ Voluntary

▪ System calls: a user process asks the OS to

do something on the process’s behalf

▪ Involuntary

▪ Hardware interrupts (e.g., I/O)

▪ Program exceptions (e.g., segmentation fault)

Switching from User Mode to

Kernel Mode

▪ For all cases, hardware atomically

performs the following steps

▪ Sets the CPU to kernel mode

▪ Saves the current program counter

▪ Jumps to the handler in the kernel

▪ The handler saves old register values

Switching from User Mode to

Kernel Mode

▪ Unlike context switching among threads,

to switch among processes

▪ Need to save and restore pointers to

translation tables

▪ To resume process execution

▪ Kernel reloads old register values

▪ Sets CPU to user mode

▪ Jumps to the old program counter

User → Kernel

User level

Kernel level

set kernel mode
PC

PC

handler trusted code

register values translation tables

(for processes)

Kernel → User

User level

Kernel level

set kernel mode
PC

PC

handler trusted code

register values translation tables

(for processes)

Kernel → User

User level

Kernel level

PC

PC

handler trusted code

register values translation tables

(for processes)

user mode

Communication Between Address

Spaces

▪ Processes communicate among address
spaces via interprocess communication
(IPC)
▪ Byte stream (e.g., pipe)

▪ Message passing (send/receive)

▪ File system (e.g., read and write files)

▪ Shared memory

▪ Bugs can propagate from one process to
another

Interprocess Communication

▪ Direct

▪ send(P1, message);

▪ receive(P2, message);

▪ One-to-one communication

▪ Indirect

▪ Mailboxes or ports

▪ send(mailbox_A, message);

▪ receive(mailbox_A, message);

▪ Many-to-many communication

Protection Without HW Support

▪ HW-supported protection can be slow

▪ Requires applications be separated into
address spaces to achieve fault isolation

▪ What if your apps are built by multiple
vendors? (e.g., Chrome plug-ins)

▪ Can we run two programs in the same
address space, with safety guarantees?

Protection via Strong Typing

▪ Programming languages may disallow the

misuse of data structures (casting)

▪ e.g., LISP and Java

▪ Java has its own virtual machines

▪ A Java program can run on different HW and

OSes

Protection via Software Fault

Isolation

▪ Compilers generate code that is provably

safe

▪ e.g., a pointer cannot reference illegal

addresses

▪ With aggressive optimizations, the

overhead can be as low as 5%

▪ A malicious user cannot jump to the last
line and do damage, since safe is a legal

address

Protection via Software Fault

Isolation

Original instruction Compiler-modified version

st r2, (r1) safe = a legal address

safe = r1

Check safe is still legal

st r2, (safe)

Demand Paged Virtual

Memory

Up to this point…

▪ We assume that a process needs to load

all of its address space before running

▪ e.g., 0x0 to 0xFFFFFFFF

▪ Observation: 90% of time is spent on 10%

of code

Demand Paging

▪ Demand paging： allows pages that are

referenced actively to be loaded into

memory

▪ Remaining pages stay on disk

▪ Provides the illusion of infinite physical

memory

Demand Paging Mechanism

▪ Page tables sometimes need to point to

disk locations (as opposed to memory

locations)

▪ A table entry needs a present (valid) bit

▪ Present means a page is in memory

▪ Not present means that there is a page fault

Page Fault

▪ Hardware trap

▪ OS performs the following steps while running other

processes (analogy: firing and hiring someone)

▪ Choose a page

▪ If the page has been modified, write its contents to disk

▪ Change the corresponding page table entry and TLB entry

▪ Load new page into memory from disk

▪ Update page table entry

▪ Continue the thread

Transparent Page Faults

▪ Transparent (invisible) mechanisms

▪ A process does not know how it happened

▪ It needs to save the processor states and the

faulting instruction

More on Transparent Page

Faults
▪ An instruction may have side effects

▪ Hardware needs to either unwind or finish off

those side effects

 ld r1, x

 // page fault, x not in memory

More on Transparent Page

Faults
▪ Hardware designers need to understand virtual

memory

▪ Unwinding instructions not always possible

▪ Example: block transfer instruction

source begin

source end

block trans
dest begin

dest end

Page Replacement Policies

▪ Random replacement: replace a random

page

+ Easy to implement in hardware (e.g., TLB)

- May toss out useful pages

▪ First in, first out (FIFO): toss out the

oldest page

+ Fair for all pages

- May toss out pages that are heavily used

More Page Replacement

Policies
▪ Optimal (MIN): replaces the page that will

not be used for the longest time

+ Optimal

- Does not know the future

▪ Least-recently used (LRU): replaces the

page that has not been used for the

longest time

+ Good if past use predicts future use

- Tricky to implement efficiently

More Page Replacement

Policies
▪ Least frequently used (LFU): replaces

the page that is used least often

▪ Tracks usage count of pages

+ Good if past use predicts future use

- Difficult to replace pages with high counts

Example

▪ A process makes references to 4 pages:

A, B, E, and R

▪ Reference stream: BEERBAREBEAR

▪ Physical memory size: 3 pages

FIFO

Memory page B E E R B A R E B E A R

1 B

2

3

FIFO

Memory page B E E R B A R E B E A R

1 B

2 E

3

FIFO

Memory page B E E R B A R E B E A R

1 B

2 E *

3

FIFO

Memory page B E E R B A R E B E A R

1 B

2 E *

3 R

FIFO

Memory page B E E R B A R E B E A R

1 B *

2 E *

3 R

FIFO

Memory page B E E R B A R E B E A R

1 B *

2 E *

3 R

FIFO

Memory page B E E R B A R E B E A R

1 B * A

2 E *

3 R

FIFO

Memory page B E E R B A R E B E A R

1 B * A

2 E *

3 R *

FIFO

Memory page B E E R B A R E B E A R

1 B * A

2 E * *

3 R *

FIFO

Memory page B E E R B A R E B E A R

1 B * A

2 E * *

3 R *

FIFO

Memory page B E E R B A R E B E A R

1 B * A

2 E * * B

3 R *

FIFO

Memory page B E E R B A R E B E A R

1 B * A

2 E * * B

3 R *

FIFO

Memory page B E E R B A R E B E A R

1 B * A

2 E * * B

3 R * E

FIFO

Memory page B E E R B A R E B E A R

1 B * A *

2 E * * B

3 R * E

FIFO

Memory page B E E R B A R E B E A R

1 B * A *

2 E * * B

3 R * E

FIFO

Memory page B E E R B A R E B E A R

1 B * A * R

2 E * * B

3 R * E

FIFO

Memory page B E E R B A R E B E A R

1 B * A * R

2 E * * B

3 R * E

▪ 7 page faults

FIFO

Memory page B E E R B A R E B E A R

1 B * A * R

2 E * * B

3 R * E

▪ 4 compulsory cache misses

Compulsory Misses vs. Page

Faults
▪ Compulsory misses

▪ Can occur at various

levels of a memory

hierarchy

▪ L1, L2, L3, main

memory

▪ Page faults

▪ Occur when a page is

not in the main

memory

MIN

Memory page B E E R B A R E B E A R

1 B

2 E *

3 R

MIN

Memory page B E E R B A R E B E A R

1 B *

2 E *

3 R

MIN

Memory page B E E R B A R E B E A R

1 B *

2 E *

3 R

MIN

Memory page B E E R B A R E B E A R

1 B * A

2 E *

3 R

MIN

Memory page B E E R B A R E B E A R

1 B * A

2 E *

3 R *

MIN

Memory page B E E R B A R E B E A R

1 B * A

2 E * *

3 R *

MIN

Memory page B E E R B A R E B E A R

1 B * A

2 E * *

3 R *

MIN

Memory page B E E R B A R E B E A R

1 B * A

2 E * *

3 R * B

MIN

Memory page B E E R B A R E B E A R

1 B * A

2 E * * *

3 R * B

MIN

Memory page B E E R B A R E B E A R

1 B * A *

2 E * * *

3 R * B

MIN

Memory page B E E R B A R E B E A R

1 B * A * R

2 E * * *

3 R * B

MIN

Memory page B E E R B A R E B E A R

1 B * A * R

2 E * * *

3 R * B

▪ 6 page faults

LRU

Memory page B E E R B A R E B E A R

1 B

2 E *

3 R

LRU

Memory page B E E R B A R E B E A R

1 B *

2 E *

3 R

LRU

Memory page B E E R B A R E B E A R

1 B *

2 E *

3 R

LRU

Memory page B E E R B A R E B E A R

1 B *

2 E * A

3 R

LRU

Memory page B E E R B A R E B E A R

1 B *

2 E * A

3 R *

LRU

Memory page B E E R B A R E B E A R

1 B *

2 E * A

3 R *

LRU

Memory page B E E R B A R E B E A R

1 B * E

2 E * A

3 R *

LRU

Memory page B E E R B A R E B E A R

1 B * E

2 E * A

3 R *

LRU

Memory page B E E R B A R E B E A R

1 B * E

2 E * A B

3 R *

LRU

Memory page B E E R B A R E B E A R

1 B * E *

2 E * A B

3 R *

LRU

Memory page B E E R B A R E B E A R

1 B * E *

2 E * A B

3 R *

LRU

Memory page B E E R B A R E B E A R

1 B * E *

2 E * A B

3 R * A

LRU

Memory page B E E R B A R E B E A R

1 B * E *

2 E * A B

3 R * A

LRU

Memory page B E E R B A R E B E A R

1 B * E *

2 E * A B R

3 R * A

LRU

Memory page B E E R B A R E B E A R

1 B * E *

2 E * A B R

3 R * A

▪ 8 page faults

LFU

Memory page B E E R B A R E B E A R

1 B

2

3

LFU

Memory page B E E R B A R E B E A R

1 B

2 E

3

LFU

Memory page B E E R B A R E B E A R

1 B

2 E 2

3

LFU

Memory page B E E R B A R E B E A R

1 B

2 E 2

3 R

LFU

Memory page B E E R B A R E B E A R

1 B 2

2 E 2

3 R

LFU

Memory page B E E R B A R E B E A R

1 B 2

2 E 2

3 R A

LFU

Memory page B E E R B A R E B E A R

1 B 2

2 E 2

3 R A R

LFU

Memory page B E E R B A R E B E A R

1 B 2

2 E 2 3

3 R A R

LFU

Memory page B E E R B A R E B E A R

1 B 2 3

2 E 2 3

3 R A R

LFU

Memory page B E E R B A R E B E A R

1 B 2 3

2 E 2 3 4

3 R A R

LFU

Memory page B E E R B A R E B E A R

1 B 2 3

2 E 2 3 4

3 R A R A

LFU

Memory page B E E R B A R E B E A R

1 B 2 3

2 E 2 3 4

3 R A R A R

LFU

Memory page B E E R B A R E B E A R

1 B 2 3

2 E 2 3 4

3 R A R A R

▪ 7 page faults

Does adding RAM always reduce

misses?

▪ Yes for LRU and MIN

▪ Memory content of X pages  X + 1 pages

▪ No for FIFO

▪ Due to modulo math

▪ Belady’s anomaly: getting more page faults

by increasing the memory size

Belady’s Anomaly

Memory page A B C D A B E A B C D E

1 A D E *

2 B A * C

3 C B * D

▪ 9 page faults

Belady’s Anomaly

Memory page A B C D A B E A B C D E

1 A * E D

2 B * A E

3 C B

4 D C

▪ 10 page faults

Implementing LRU

▪ One way is to require a timestamp on

each reference to a cache page

▪ Too expensive

▪ An alternative is to use a stack

▪ Whenever a page is referenced, move to the

top

▪ When needed, discard the bottom page

▪ Common practice

▪ Approximate the LRU behavior

Clock Algorithm

▪ Replaces an old page, but not the oldest

page

▪ Arranges physical pages in a circle

▪ With a clock hand

▪ Each page has a used bit

▪ Set to 1 on reference

▪ On page fault, sweep the clock hand

▪ If the used bit == 1, set it to 0

▪ If the used bit == 0, pick the page for replacement

Clock Algorithm

0

1

1

1

0

0

0

0

Clock Algorithm

0

1

0

1

0

0

0

0

Clock Algorithm

0

1

0

1

0

0

0

0

Clock Algorithm

0

1

0

0

0

0

0

0

Clock Algorithm

0

1

0

0

0

0

0

0

Clock Algorithm

0

1

0

0

0

0

0

0

replace

Clock Algorithm

0

1

0

0

1

0

0

0

Clock Algorithm

▪ The clock hand cannot sweep indefinitely

▪ Each bit is eventually cleared

▪ Slow moving hand

▪ Few page faults

▪ Quick moving hand

▪ Many page faults

Nth Chance Algorithm

▪ A variant of clocking algorithm

▪ A page has to be swept N times before being

replaced

▪ N → , Nth Chance Algorithm → LRU

▪ Common implementation

▪ N = 2 for modified pages

▪ N = 1 for unmodified pages

States for a Page Table Entry

▪ Used bit: set when a page is referenced;

cleared by the clock algorithm

▪ Modified bit: set when a page is

modified; cleared when a page is written to

disk

▪ Valid bit: set when a program can

legitimately use this entry

▪ Read-only: set for a program to read the

page, but not to modify it (e.g., code

pages)

Thrashing

▪ Occurs when the memory is

overcommitted

▪ Pages are still needed are tossed out

▪ Example

▪ A process needs 50 memory pages

▪ A machine has only 40 memory pages

▪ Need to constantly move pages between

memory and disk

▪ Another example

▪ Two processes kick out each other’s useful

pages

Thrashing Avoidance

▪ Programs should minimize the maximum

memory requirement at a given time

▪ e.g., matrix multiplications can be broken into

sub-matrix multiplications

▪ OS figures out the memory needed for

each process

▪ Runs only the computations that can fit in

RAM

Working Set

▪ A set of pages that was referenced in the

previous T seconds

▪ T → , working set → size of the entire

process

▪ Observation

▪ Beyond a certain threshold, more memory

only slightly reduces the number of page

faults

Working Set

Memory page A B C D A B C D E F G H

1 A D C F

2 B A D G

3 C B E H

▪ LRU, 3 memory pages, 12 page faults

Working Set

Memory page A B C D A B C D E F G H

1 A * E

2 B * F

3 C * G

4 D * H

▪ LRU, 4 memory pages, 8 page faults

Working Set

Memory page A B C D A B C D E F G H

1 A * F

2 B * G

3 C * H

4 D *

5 E

▪ LRU, 5 memory pages, 8 page faults

Global and Local Replacement

Policies

▪ Global replacement policy: all pages

are in a single pool (e.g., UNIX)

▪ One process needs more memory

▪Grabs memory from another process that needs

less

+ Flexible

- One process can drag down the entire system

▪ Per-process replacement policy: each

process has its own pool of pages

Linux Memory Manager (1)

▪ Page allocator maintains individual pages

Page allocator

Linux Memory Manager (2)

▪ Zone (buddy) allocator allocates memory

in power-of-two sizes

Page allocator

Zone allocator

Linux Memory Manager (3)

▪ Slab allocator groups allocations by sizes

to reduce internal memory fragmentation

Page allocator

Zone allocator

Slab allocator

After Linux 2.6.24

▪ SLUB allocator replaced SLAB allocator

▪ Moved metadata from SLAB to memory page

data structure

▪ SLUB does not maintain a per-CPU queue

▪ Lower overhead

	Slide 1: Memory Protection and Address Translation
	Slide 2: This Lecture…
	Slide 3: Memory Architecture
	Slide 4: Memory Addresses
	Slide 5: Up to This Point
	Slide 6: Physical vs. Virtual Memory
	Slide 7: Physical vs. Virtual Memory
	Slide 8: Memory Organizations
	Slide 9: Uniprogramming Without Memory Protection
	Slide 10: Multiprogramming Without Memory Protection
	Slide 11: Multiprogramming Without Memory Protection
	Slide 12: Multiprogrammed OS With Memory Protection
	Slide 13: Address Translation
	Slide 14: Address Translation Visualized
	Slide 15: More on Address Translations
	Slide 16: Assumptions
	Slide 17: Base-and-Bound Translation
	Slide 18: Base-and-Bound Translation
	Slide 19: Base-and-Bound Translation
	Slide 20: Pros/Cons of Base-and-Bound Translation
	Slide 21: Pros/Cons of Base-and-Bound Translation
	Slide 22: Segmentation
	Slide 23: Segmentation Illustrated
	Slide 24: Segmentation Diagram
	Slide 25: Segmentation Diagram
	Slide 26: Segmentation Diagram
	Slide 27: Segmentation Diagram
	Slide 28: Segmentation Translation
	Slide 29: Pros/Cons of Segmentation
	Slide 30: Paging
	Slide 31: Paging Illustrated
	Slide 32: Paged Memory Acces
	Slide 33: Paging Diagram
	Slide 34: Paging Example
	Slide 35: Paging Example
	Slide 36: Paging Example
	Slide 37: Paging Translation
	Slide 38: Pros and Cons of Paging
	Slide 39: Multi-Level Translation
	Slide 40: Segmented Paging
	Slide 41: Segmented Paging
	Slide 42: Segmented Paging Example
	Slide 43: Segmented Paging
	Slide 44: Segmented Paging Example
	Slide 45: Segmented Paging Example
	Slide 46: Segmented Paging Translation
	Slide 47: Pros/Cons of Segmented Paging
	Slide 48: Paged Page Tables
	Slide 49: Paged Page Table Translation
	Slide 50: Pros/Cons of Paged Page Tables
	Slide 51: Hashed Page Tables
	Slide 52: Inverted Page Table
	Slide 53: Dual-mode Operation Revisited
	Slide 54: Details of Dual-mode Operations
	Slide 55: Switching from the Kernel to User Mode
	Slide 56: To Run a Program
	Slide 57: Switching from User Mode to Kernel Mode
	Slide 58: Switching from User Mode to Kernel Mode
	Slide 59: Switching from User Mode to Kernel Mode
	Slide 60: User  Kernel
	Slide 61: Kernel  User
	Slide 62: Kernel  User
	Slide 63: Communication Between Address Spaces
	Slide 64: Interprocess Communication
	Slide 65: Protection Without HW Support
	Slide 66: Protection via Strong Typing
	Slide 67: Protection via Software Fault Isolation
	Slide 68: Protection via Software Fault Isolation
	Slide 69: Demand Paged Virtual Memory
	Slide 70: Up to this point…
	Slide 71: Demand Paging
	Slide 72: Demand Paging Mechanism
	Slide 73: Page Fault
	Slide 74: Transparent Page Faults
	Slide 75: More on Transparent Page Faults
	Slide 76: More on Transparent Page Faults
	Slide 77: Page Replacement Policies
	Slide 78: More Page Replacement Policies
	Slide 79: More Page Replacement Policies
	Slide 80: Example
	Slide 81: FIFO
	Slide 82: FIFO
	Slide 83: FIFO
	Slide 84: FIFO
	Slide 85: FIFO
	Slide 86: FIFO
	Slide 87: FIFO
	Slide 88: FIFO
	Slide 89: FIFO
	Slide 90: FIFO
	Slide 91: FIFO
	Slide 92: FIFO
	Slide 93: FIFO
	Slide 94: FIFO
	Slide 95: FIFO
	Slide 96: FIFO
	Slide 97: FIFO
	Slide 98: FIFO
	Slide 99: Compulsory Misses vs. Page Faults
	Slide 100: MIN
	Slide 101: MIN
	Slide 102: MIN
	Slide 103: MIN
	Slide 104: MIN
	Slide 105: MIN
	Slide 106: MIN
	Slide 107: MIN
	Slide 108: MIN
	Slide 109: MIN
	Slide 110: MIN
	Slide 111: MIN
	Slide 112: LRU
	Slide 113: LRU
	Slide 114: LRU
	Slide 115: LRU
	Slide 116: LRU
	Slide 117: LRU
	Slide 118: LRU
	Slide 119: LRU
	Slide 120: LRU
	Slide 121: LRU
	Slide 122: LRU
	Slide 123: LRU
	Slide 124: LRU
	Slide 125: LRU
	Slide 126: LRU
	Slide 127: LFU
	Slide 128: LFU
	Slide 129: LFU
	Slide 130: LFU
	Slide 131: LFU
	Slide 132: LFU
	Slide 133: LFU
	Slide 134: LFU
	Slide 135: LFU
	Slide 136: LFU
	Slide 137: LFU
	Slide 138: LFU
	Slide 139: LFU
	Slide 140: Does adding RAM always reduce misses?
	Slide 141: Belady’s Anomaly
	Slide 142: Belady’s Anomaly
	Slide 143: Implementing LRU
	Slide 144: Clock Algorithm
	Slide 145: Clock Algorithm
	Slide 146: Clock Algorithm
	Slide 147: Clock Algorithm
	Slide 148: Clock Algorithm
	Slide 149: Clock Algorithm
	Slide 150: Clock Algorithm
	Slide 151: Clock Algorithm
	Slide 152: Clock Algorithm
	Slide 153: Nth Chance Algorithm
	Slide 154: States for a Page Table Entry
	Slide 155: Thrashing
	Slide 156: Thrashing Avoidance
	Slide 157: Working Set
	Slide 158: Working Set
	Slide 159: Working Set
	Slide 160: Working Set
	Slide 161: Global and Local Replacement Policies
	Slide 162: Linux Memory Manager (1)
	Slide 163: Linux Memory Manager (2)
	Slide 164: Linux Memory Manager (3)
	Slide 165: After Linux 2.6.24

