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This Lecture…

▪ Different address translation schemes

▪ Base-and-bound translation

▪ Segmentation

▪ Paging

▪ Multi-level translation

▪ Paged page tables

▪ Hashed page tables

▪ Inverted page tables

▪ Dual-mode Operations



Memory Architecture



Memory Addresses

▪ Memory is byte-addressable

▪ Each memory address can specify the 

location of a byte

▪ unsigned char memory[MEMORY_SIZE]

▪ To access

▪ memory[virtual_memory_address]



Up to This Point

▪ Threads provide the illusion of an infinite 

number of CPUs 

▪ On a single processor machine

▪ Memory management provides a different 

set of illusions

▪ Protected memory

▪ Infinite amount of memory

▪ Transparent sharing 



Physical vs. Virtual Memory

Physical memory

No protection

Limited size

Sharing visible to 

processes



Physical vs. Virtual Memory

Physical memory Virtual memory

No protection Each process isolated 

from others and from OS

Limited size Illusion of infinite 

memory

Sharing visible to 

processes

Each process cannot tell 

if memory is shared



Memory Organizations

▪ Simplest:  uniprogramming without 

memory protection

▪ Each application runs within a hardwired 

range of physical memory addresses

▪ One application runs at a time

▪ Application can use the same physical 

addresses every time, across reboots

▪ E.g., Embedded System



Uniprogramming Without Memory 

Protection

▪ Applications typically use the lower 

memory addresses 

▪ An OS uses the higher memory addresses

▪ An application can address any physical 

memory location (may cause an OS crash)

000000 ffffff

Physical memory

Application Operating system



Multiprogramming Without 

Memory Protection

▪ When a program is copied into memory, a 

linker-loader alters the code of the 

program (e.g., loads, stores, and jumps)

▪ To use the address of where the program 

lands in memory



Multiprogramming Without Memory 

Protection

▪ Bugs in any program can cause other 

programs to crash, even the OS

000000 ffffff

Physical memory

Application 1 Operating systemApplication 2



Multiprogrammed OS With 

Memory Protection

▪ Memory protection keeps user programs 

from crashing one another and the OS

▪ Two hardware-supported mechanisms

▪ Address translation

▪ Dual-mode operation



Address Translation

▪ Each process is associated with an 
address space, or all the physical 
addresses a process can touch

▪ However, each process believes that it 
owns the entire memory, starting with the 
virtual address 0

▪ The missing piece is a translation table 

▪ Translate every memory reference from 
virtual to physical addresses



Address Translation Visualized

Virtual 

addresses

Physical

addresses

Translation table

Data reads or writes

(untranslated)

Unidirectional



More on Address Translations

▪ Translation provides protection

▪ Processes cannot talk about other processes’ 

addresses, nor about the OS addresses

▪ OS uses physical addresses directly

▪ No translations



Assumptions

▪ 32-bit machines

▪ 1-GB RAM max



Base-and-Bound Translation

▪ Each process is loaded into a contiguous 

region of physical memory

▪ Processes are protected from one another

Virtual address Physical address

Base

+

Error>

Bound



Base-and-Bound Translation

▪ Each process “thinks” that it owns a 

dedicated machine, with memory 

addresses from 0 to bound

code

data

…

stack

Virtual addresses Physical addresses
0

bound

code

data

…

stack

base = 6250

6250 + bound



Base-and-Bound Translation

▪ An OS can move a process around

▪ By copying bits

▪ Changing the base and bound registers



Pros/Cons of Base-and-Bound 

Translation

+ Simplicity 

+ Speed

- External fragmentation:  memory wasted  

because the available memory is not 

contiguous for allocation

- Difficult to share programs

▪ Each instance of a program needs to have a 

copy of the code segment



Pros/Cons of Base-and-Bound 

Translation

- Memory allocation is complex

▪ Need to find contiguous chunks of free 

memory

▪ First fit: Use the first free memory region that is 

big enough

▪ Best fit:  Use the smallest free memory region

▪Worst fit:  Use the largest free memory region 

▪ Reorganization involves copying 

- Does not work well when address spaces 

grow and shrink dynamically



Segmentation

▪ Segment:  a logically contiguous memory 

region

▪ Segmentation-based translation:  use a 

table of base-and-bound pairs



Segmentation Illustrated
Virtual addresses Physical addresses

code

0x4000

0x46ff

0x0

0x6ff

code

data
0x1000

0x14ff

data
0x0

0x4ff

stack

0x3000

0x3fff

stack

0x2000

0x2fff



Segmentation Diagram

Virt seg # Offset Phy addr

Physical seg base Seg bound

Physical seg base Seg bound

Physical seg base Seg bound

+

Error>

log2(1GB)  = 30 bits for 1GB of RAM

30 bits up to 30 bits

up to 30 bits

32 - 30 = 2 bits

for 32-bit machines

22 entries



Segmentation Diagram

2 0x80000200

>

0x2200

0x4000 0x700

0x0 0x500

0x2000 0x1000

+

code

data

stack

00

01

10

1000 0000 0000 0000 0000 0010 0000 0000



Segmentation Diagram

2 0x40000100

>

?

0x4000 0x700

0x0 0x500

0x2000 0x1000

+

code

data

stack

00

01

10



Segmentation Diagram

2 0x00000800

>

?

0x4000 0x700

0x0 0x500

0x2000 0x1000

+

code

data

stack

00

01

10



Segmentation Translation

▪ virtual_address = 

virtual_segment_number:offset

▪ physical_base_address = 

segment_table[virtual_segment_number]

▪ physical_address = 

physical_base_address + offset



Pros/Cons of Segmentation

+ Easier to grow/shrink individual segments

+ Finer control of segment accesses

▪ e.g., read-only for shared code segment

▪ Recall the semantics of fork()…

+ More efficient use of physical space 

+ Multiple processes can share the same 
code segment

- Memory allocation is still complex

▪ Requires contiguous allocation



Paging

▪ Paging-based translation:  memory 

allocation via fixed-size chunks of memory, 

or pages

▪ Uses a bitmap to track the allocation 

status of memory pages

▪ Translation granularity is a page



Paging Illustrated
Virtual addresses Physical addresses

0x0

0x1000

0x2000

0x0

0x3000

0x3fff

0x1000

0x2000

0x3000

0x4000



Paged Memory Acces

unsigned char memory[N_PAGES][PAGE_SIZE]

▪ To access

▪ memory[virtual_page_number][page_offset]



Paging Diagram

Virtual page number Offset

Physical page number

Physical page number

Physical page number

Physical page number Offset

Page table size

>

Error

32 – 12 = 20 bits for 32-bit machines

log2(1GB)  = 30 bits for 1GB of RAM

log2(4KB) = 12 bits for 4-KB pages

220 entries



Paging Example

00x00000400 2

>

0000 0000 0000 0000 0000 0100 0000 0000

00004

00000

00002

40x00004400

0

1

2

…0000

…0001

…0010



Paging Example

00x00001200 2

>

00004

00000

00002

4 ?

0

1

2

…0000

…0001

…0010



Paging Example

00x00002500 2

>

00004

00000

00002

4 ?

0

1

2

…0000

…0001

…0010



Paging Translation

▪ virtual_address = 

virtual_page_number:offset

▪ physical_page_number = 

page_table[virtual_page_number]

▪ physical_address = 

physical_page_number:offset



Pros and Cons of Paging

+ Easier memory allocation

+ Allows code sharing

- Internal fragmentation:  allocated pages 

are not fully used 

- Page table can potentially be very large

▪ 32-bit architecture with 1-KB pages can 

require 4M table entries



Multi-Level Translation

▪ Segmented-paging translation:  breaks 

the page table into segments

▪ Paged page tables:  Two-level tree of 

page tables



Segmented Paging

30 bits for 1-GB RAM 32 - 3 - 12 = 17 bits

12 bits for 4-KB pages

23 entries

Seg # OffsetVirt page #

log2(6 segments)   

= 3 bits

Error>

18 bits

num of

entries

defined by

bound; up 

to 217 

entries

+

Page table base Page table bound

Page table base Page table bound

Page table base Page table bound

Phy page #

Phy page #

Phy page #



Segmented Paging

Page table size

>

Error

Seg # OffsetVirt page #

21732 – 3 – 12 = 17 bits

Phy page # Offset

Phy page #

Phy page #

Phy page #

log2(1GB)  = 30 bits for 1GB of RAM



Segmented Paging Example

001 … 001100 … 0010

Error>

0x20002003

0 0000 0000 0000 0010

0000 0000 0011

+

0x00000000 0x16

0x00003000 0x1000

0x50000000 0x20

Phy page #

Phy page #

Phy page #

000

001

010

Page table 

segment number

Page table 

segment starting 

address

Number of page 

table entries

0x00003000



Segmented Paging

0x1000

>

Error

001 … 0011… 0010

0x20002003

0x70008 0x003

0x70000

0x70004

0x70008

00

01

10

Page table 

Entry number

0 0000 0000 0000 0010
0000 0000 0011



Segmented Paging Example

? ??

Error>

0x21002005

? ?

+

0x00000000 0x16

0x00003000 0x1000

0x50000000 0x20

Phy page #

Phy page #

Phy page #

Page table 

segment number

Page table 

segment starting 

address

Number of page

Table entries

0x00003000

000

001

010



Segmented Paging Example

001 … 0101

Error>

0x21002005

0 0001 0000 0000 0010

0000 0000 0101

+

0x00000000 0x16

0x00003000 0x1000

0x50000000 0x20

Phy page #

Phy page #

Phy page #

Page table 

segment number

Page table 

segment starting 

address

Number of page

Table entries

0x00003000

000

001

010



Segmented Paging Translation

▪ virtual_address = 

segment_number:page_number:offset

▪ page_table = 

segment_table[segment_number]

▪ physical_page_number =

 page_table[virtual_page_number]

▪ physical_address = 

physical_page_number:offset



Pros/Cons of Segmented Paging

+ Code sharing

+ Reduced memory requirements for page 

tables

- Higher overhead and complexity

- Page tables still need to be contiguous

- Two lookups per memory reference



Paged Page Tables

Page table num OffsetVirt page num

Page table address (30 bits)

Page table address

Page table address

Phy page num

Phy page num

Phy page num

Phy page num (18 bits) Offset

12 bits for 4-KB pages12 bits

212 

entries

28 

entries



Paged Page Table Translation

▪ virtual_address = 

page_table_num:virtual_page_num:offset

▪ page_table = 

page_table_address[page_table_num]

▪ physical_page_num = 

page_table[virtual_page_num]

▪ physical_address = 

physical_page_num:offset



Pros/Cons of Paged Page Tables

+ Can be generalized into multi-level paging

- Multiple memory lookups are required to 

translate a virtual address

▪ Can be accelerated with translation 

lookaside buffers (TLBs)

▪ Store recently translated memory addresses for 

short-term reuses



Hashed Page Tables

▪ Physical_address 

= hash(virtual_page_num):offset

+ Conceptually simple

- Need to handle collisions

- Need one hash table per address space



Inverted Page Table

▪ One hash entry per physical page

▪ physical_address 

= hash(pid, virtual_page_num):offset

+ The number of page table entries is 

proportional to the size of physical RAM

- Collision handling



Dual-mode Operation Revisited

▪ Translation tables offer protection if they 

cannot be altered by applications

▪ An application can only touch its address 

space under the user mode

▪ HW requires the CPU to be in the kernel 

mode to modify the address translation 

tables



Details of Dual-mode Operations

▪ How the CPU is shared between the 

kernel and user processes

▪ How processes interact among 

themselves



Switching from the Kernel to User 

Mode

▪ To run a user program, the kernel

▪ Creates a process and initialize the address 
space

▪ Loads the program into the memory

▪ Initializes translation tables

▪ Sets the HW pointer to the translation table

▪ Sets the CPU to user mode

▪ Jumps to the entry point of the program



To Run a Program

User level

Kernel level

Translation table

Hardware pointer

user mode

PC

jump



Switching from User Mode to 

Kernel Mode

▪ Voluntary

▪ System calls: a user process asks the OS to 

do something on the process’s behalf

▪ Involuntary

▪ Hardware interrupts (e.g., I/O)

▪ Program exceptions (e.g., segmentation fault)



Switching from User Mode to 

Kernel Mode

▪ For all cases, hardware atomically 

performs the following steps

▪ Sets the CPU to kernel mode

▪ Saves the current program counter

▪ Jumps to the handler in the kernel 

▪ The handler saves old register values



Switching from User Mode to 

Kernel Mode

▪ Unlike context switching among threads, 

to switch among processes

▪ Need to save and restore pointers to 

translation tables

▪ To resume process execution

▪ Kernel reloads old register values

▪ Sets CPU to user mode

▪ Jumps to the old program counter 



User → Kernel

User level

Kernel level

set kernel mode
PC

PC

handler trusted code

register values translation tables

(for processes)



Kernel → User

User level

Kernel level

set kernel mode
PC

PC

handler trusted code

register values translation tables

(for processes)



Kernel → User

User level

Kernel level

PC

PC

handler trusted code

register values translation tables

(for processes)

user mode



Communication Between Address 

Spaces

▪ Processes communicate among address 
spaces via interprocess communication 
(IPC)
▪ Byte stream (e.g., pipe)

▪ Message passing (send/receive)

▪ File system (e.g., read and write files)

▪ Shared memory

▪ Bugs can propagate from one process to 
another



Interprocess Communication

▪ Direct 

▪ send(P1, message);

▪ receive(P2, message);

▪ One-to-one communication

▪ Indirect

▪ Mailboxes or ports

▪ send(mailbox_A, message);

▪ receive(mailbox_A, message);

▪ Many-to-many communication



Protection Without HW Support

▪ HW-supported protection can be slow

▪ Requires applications be separated into 
address spaces to achieve fault isolation

▪ What if your apps are built by multiple 
vendors?  (e.g., Chrome plug-ins)

▪ Can we run two programs in the same 
address space, with safety guarantees?



Protection via Strong Typing

▪ Programming languages may disallow the 

misuse of data structures (casting)

▪ e.g., LISP and Java

▪ Java has its own virtual machines

▪ A Java program can run on different HW and 

OSes



Protection via Software Fault 

Isolation

▪ Compilers generate code that is provably 

safe

▪ e.g., a pointer cannot reference illegal 

addresses

▪ With aggressive optimizations, the 

overhead can be as low as 5%



▪ A malicious user cannot jump to the last 
line and do damage, since safe is a legal 

address

Protection via Software Fault 

Isolation

Original instruction Compiler-modified version

st r2, (r1) safe = a legal address

safe = r1

Check safe is still legal

st r2, (safe)



Demand Paged Virtual 

Memory



Up to this point…

▪ We assume that a process needs to load 

all of its address space before running

▪ e.g., 0x0 to 0xFFFFFFFF

▪ Observation:  90% of time is spent on 10% 

of code



Demand Paging

▪ Demand paging：  allows pages that are 

referenced actively to be loaded into 

memory

▪ Remaining pages stay on disk

▪ Provides the illusion of infinite physical 

memory



Demand Paging Mechanism

▪ Page tables sometimes need to point to 

disk locations (as opposed to memory 

locations)

▪ A table entry needs a present (valid) bit

▪ Present means a page is in memory

▪ Not present means that there is a page fault



Page Fault

▪ Hardware trap

▪ OS performs the following steps while running other 

processes (analogy:  firing and hiring someone)

▪ Choose a page

▪ If the page has been modified, write its contents to disk

▪ Change the corresponding page table entry and TLB entry

▪ Load new page into memory from disk

▪ Update page table entry

▪ Continue the thread



Transparent Page Faults

▪ Transparent (invisible) mechanisms

▪ A process does not know how it happened

▪ It needs to save the processor states and the 

faulting instruction



More on Transparent Page 

Faults
▪ An instruction may have side effects

▪ Hardware needs to either unwind or finish off 

those side effects

 

 ld r1, x

 // page fault, x not in memory



More on Transparent Page 

Faults
▪ Hardware designers need to understand virtual 

memory

▪ Unwinding instructions not always possible

▪ Example:  block transfer instruction

source begin

source end

block trans
dest begin

dest end



Page Replacement Policies

▪ Random replacement:  replace a random 

page

+ Easy to implement in hardware (e.g., TLB)

- May toss out useful pages

▪ First in, first out (FIFO): toss out the 

oldest page

+ Fair for all pages

- May toss out pages that are heavily used



More Page Replacement 

Policies
▪ Optimal (MIN):  replaces the page that will 

not be used for the longest time

+ Optimal

- Does not know the future

▪ Least-recently used (LRU):  replaces the 

page that has not been used for the 

longest time

+ Good if past use predicts future use

- Tricky to implement efficiently



More Page Replacement 

Policies
▪ Least frequently used (LFU):  replaces 

the page that is used least often

▪ Tracks usage count of pages

+ Good if past use predicts future use

- Difficult to replace pages with high counts



Example

▪ A process makes references to 4 pages:  

A, B, E, and R

▪ Reference stream:  BEERBAREBEAR

▪ Physical memory size:  3 pages



FIFO

Memory page B E E R B A R E B E A R

1 B

2

3



FIFO

Memory page B E E R B A R E B E A R

1 B

2 E

3



FIFO

Memory page B E E R B A R E B E A R

1 B

2 E *

3



FIFO

Memory page B E E R B A R E B E A R

1 B

2 E *

3 R



FIFO

Memory page B E E R B A R E B E A R

1 B *

2 E *

3 R



FIFO

Memory page B E E R B A R E B E A R

1 B *

2 E *

3 R



FIFO

Memory page B E E R B A R E B E A R

1 B * A

2 E *

3 R



FIFO

Memory page B E E R B A R E B E A R

1 B * A

2 E *

3 R *



FIFO

Memory page B E E R B A R E B E A R

1 B * A

2 E * *

3 R *



FIFO

Memory page B E E R B A R E B E A R

1 B * A

2 E * *

3 R *



FIFO

Memory page B E E R B A R E B E A R

1 B * A

2 E * * B

3 R *



FIFO

Memory page B E E R B A R E B E A R

1 B * A

2 E * * B

3 R *



FIFO

Memory page B E E R B A R E B E A R

1 B * A

2 E * * B

3 R * E



FIFO

Memory page B E E R B A R E B E A R

1 B * A *

2 E * * B

3 R * E



FIFO

Memory page B E E R B A R E B E A R

1 B * A *

2 E * * B

3 R * E



FIFO

Memory page B E E R B A R E B E A R

1 B * A * R

2 E * * B

3 R * E



FIFO

Memory page B E E R B A R E B E A R

1 B * A * R

2 E * * B

3 R * E

▪ 7 page faults



FIFO

Memory page B E E R B A R E B E A R

1 B * A * R

2 E * * B

3 R * E

▪ 4 compulsory cache misses



Compulsory Misses vs. Page 

Faults
▪ Compulsory misses

▪ Can occur at various 

levels of a memory 

hierarchy

▪ L1, L2, L3, main 

memory

▪ Page faults

▪ Occur when a page is 

not in the main 

memory



MIN

Memory page B E E R B A R E B E A R

1 B

2 E *

3 R



MIN

Memory page B E E R B A R E B E A R

1 B *

2 E *

3 R



MIN

Memory page B E E R B A R E B E A R

1 B *

2 E *

3 R



MIN

Memory page B E E R B A R E B E A R

1 B * A

2 E *

3 R



MIN

Memory page B E E R B A R E B E A R

1 B * A

2 E *

3 R *



MIN

Memory page B E E R B A R E B E A R

1 B * A

2 E * *

3 R *



MIN

Memory page B E E R B A R E B E A R

1 B * A

2 E * *

3 R *



MIN

Memory page B E E R B A R E B E A R

1 B * A

2 E * *

3 R * B



MIN

Memory page B E E R B A R E B E A R

1 B * A

2 E * * *

3 R * B



MIN

Memory page B E E R B A R E B E A R

1 B * A *

2 E * * *

3 R * B



MIN

Memory page B E E R B A R E B E A R

1 B * A * R

2 E * * *

3 R * B



MIN

Memory page B E E R B A R E B E A R

1 B * A * R

2 E * * *

3 R * B

▪ 6 page faults



LRU

Memory page B E E R B A R E B E A R

1 B

2 E *

3 R



LRU

Memory page B E E R B A R E B E A R

1 B *

2 E *

3 R



LRU

Memory page B E E R B A R E B E A R

1 B *

2 E *

3 R



LRU

Memory page B E E R B A R E B E A R

1 B *

2 E * A

3 R



LRU

Memory page B E E R B A R E B E A R

1 B *

2 E * A

3 R *



LRU

Memory page B E E R B A R E B E A R

1 B *

2 E * A

3 R *



LRU

Memory page B E E R B A R E B E A R

1 B * E

2 E * A

3 R *



LRU

Memory page B E E R B A R E B E A R

1 B * E

2 E * A

3 R *



LRU

Memory page B E E R B A R E B E A R

1 B * E

2 E * A B

3 R *



LRU

Memory page B E E R B A R E B E A R

1 B * E *

2 E * A B

3 R *



LRU

Memory page B E E R B A R E B E A R

1 B * E *

2 E * A B

3 R *



LRU

Memory page B E E R B A R E B E A R

1 B * E *

2 E * A B

3 R * A



LRU

Memory page B E E R B A R E B E A R

1 B * E *

2 E * A B

3 R * A



LRU

Memory page B E E R B A R E B E A R

1 B * E *

2 E * A B R

3 R * A



LRU

Memory page B E E R B A R E B E A R

1 B * E *

2 E * A B R

3 R * A

▪ 8 page faults



LFU

Memory page B E E R B A R E B E A R

1 B

2

3



LFU

Memory page B E E R B A R E B E A R

1 B

2 E

3



LFU

Memory page B E E R B A R E B E A R

1 B

2 E 2

3



LFU

Memory page B E E R B A R E B E A R

1 B

2 E 2

3 R



LFU

Memory page B E E R B A R E B E A R

1 B 2

2 E 2

3 R



LFU

Memory page B E E R B A R E B E A R

1 B 2

2 E 2

3 R A



LFU

Memory page B E E R B A R E B E A R

1 B 2

2 E 2

3 R A R



LFU

Memory page B E E R B A R E B E A R

1 B 2

2 E 2 3

3 R A R



LFU

Memory page B E E R B A R E B E A R

1 B 2 3

2 E 2 3

3 R A R



LFU

Memory page B E E R B A R E B E A R

1 B 2 3

2 E 2 3 4

3 R A R



LFU

Memory page B E E R B A R E B E A R

1 B 2 3

2 E 2 3 4

3 R A R A



LFU

Memory page B E E R B A R E B E A R

1 B 2 3

2 E 2 3 4

3 R A R A R



LFU

Memory page B E E R B A R E B E A R

1 B 2 3

2 E 2 3 4

3 R A R A R

▪ 7 page faults



Does adding RAM always reduce 

misses?

▪ Yes for LRU and MIN

▪ Memory content of X pages  X + 1 pages

▪ No for FIFO

▪ Due to modulo math

▪ Belady’s anomaly:  getting more page faults 

by increasing the memory size



Belady’s Anomaly

Memory page A B C D A B E A B C D E

1 A D E *

2 B A * C

3 C B * D

▪ 9 page faults



Belady’s Anomaly

Memory page A B C D A B E A B C D E

1 A * E D

2 B * A E

3 C B

4 D C

▪ 10 page faults



Implementing LRU

▪ One way is to require a timestamp on 

each reference to a cache page

▪ Too expensive 

▪ An alternative is to use a stack 

▪ Whenever a page is referenced, move to the 

top

▪ When needed, discard the bottom page

▪ Common practice

▪ Approximate the LRU behavior



Clock Algorithm

▪ Replaces an old page, but not the oldest 

page

▪ Arranges physical pages in a circle

▪ With a clock hand

▪ Each page has a used bit

▪ Set to 1 on reference

▪ On page fault, sweep the clock hand

▪ If the used bit == 1, set it to 0

▪ If the used bit == 0, pick the page for replacement



Clock Algorithm

0

1

1

1

0

0

0

0



Clock Algorithm

0

1

0

1

0

0

0

0



Clock Algorithm

0

1

0

1

0

0

0

0



Clock Algorithm

0

1

0

0

0

0

0

0



Clock Algorithm

0

1

0

0

0

0

0

0



Clock Algorithm

0

1

0

0

0

0

0

0

replace



Clock Algorithm

0

1

0

0

1

0

0

0



Clock Algorithm

▪ The clock hand cannot sweep indefinitely

▪ Each bit is eventually cleared

▪ Slow moving hand

▪ Few page faults

▪ Quick moving hand

▪ Many page faults



Nth Chance Algorithm

▪ A variant of clocking algorithm

▪ A page has to be swept N times before being 

replaced

▪ N → , Nth Chance Algorithm → LRU

▪ Common implementation

▪ N = 2 for modified pages

▪ N = 1 for unmodified pages



States for a Page Table Entry

▪ Used bit:  set when a page is referenced; 

cleared by the clock algorithm

▪ Modified bit:  set when a page is 

modified; cleared when a page is written to 

disk

▪ Valid bit:  set when a program can 

legitimately use this entry

▪ Read-only:  set for a program to read the 

page, but not to modify it (e.g., code 

pages)



Thrashing

▪ Occurs when the memory is 

overcommitted

▪ Pages are still needed are tossed out

▪ Example

▪ A process needs 50 memory pages

▪ A machine has only 40 memory pages

▪ Need to constantly move pages between 

memory and disk

▪ Another example

▪ Two processes kick out each other’s useful 

pages



Thrashing Avoidance

▪ Programs should minimize the maximum 

memory requirement at a given time

▪ e.g., matrix multiplications can be broken into 

sub-matrix multiplications 

▪ OS figures out the memory needed for 

each process

▪ Runs only the computations that can fit in 

RAM



Working Set

▪ A set of pages that was referenced in the 

previous T seconds

▪ T → , working set → size of the entire 

process

▪ Observation

▪ Beyond a certain threshold, more memory 

only slightly reduces the number of page 

faults



Working Set

Memory page A B C D A B C D E F G H

1 A D C F

2 B A D G

3 C B E H

▪ LRU, 3 memory pages, 12 page faults



Working Set

Memory page A B C D A B C D E F G H

1 A * E

2 B * F

3 C * G

4 D * H

▪ LRU, 4 memory pages, 8 page faults



Working Set

Memory page A B C D A B C D E F G H

1 A * F

2 B * G

3 C * H

4 D *

5 E

▪ LRU, 5 memory pages, 8 page faults



Global and Local Replacement 

Policies

▪ Global replacement policy:  all pages 

are in a single pool (e.g., UNIX)

▪ One process needs more memory

▪Grabs memory from another process that needs 

less

+ Flexible

- One process can drag down the entire system

▪ Per-process replacement policy:  each 

process has its own pool of pages



Linux Memory Manager (1)

▪ Page allocator maintains individual pages

Page allocator



Linux Memory Manager (2)

▪ Zone (buddy) allocator allocates memory 

in power-of-two sizes

Page allocator

Zone allocator



Linux Memory Manager (3)

▪ Slab allocator groups allocations by sizes 

to reduce internal memory fragmentation

Page allocator

Zone allocator

Slab allocator



After Linux 2.6.24

▪ SLUB allocator replaced SLAB allocator

▪ Moved metadata from SLAB to memory page 

data structure

▪ SLUB does not maintain a per-CPU queue

▪ Lower overhead
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