
Lecture 6: Process’s Address Space
Initial State, Management, and Hacking

Xin Liu

Florida State University
xliu15@fsu.edu

COP 4610 Operating Systems
https://xinliulab.github.io/FSU-COP4610-Operating-Systems/

mailto:xliu15j@fsu.edu
https://xinliulab.github.io/FSU-COP4610-Operating-Systems/


Recap

Background:
• Linux builds the entire application program world from an

initial process (state machine).
• Through fork, execve, and exit, we can create many child

processes and execute them concurrently.

Recap Memory Hacking Takeaways 1 / 51



Recap

This Lecture:
• Based on our state machine model, a process’s state consists

of memory and registers.
• Registers are well-defined and can be examined using info
registers of gdb. Try: 10 miniHello.s

• What is inside the ”flat” address space of a process (0 to
264 − 1)?

• Can we ”invade” another process’s address space?

Recap Memory Hacking Takeaways 2 / 51

https://github.com/FSU-COP4610-F25/in-class-code


A Process’s Memory

Recap Memory Hacking Takeaways 3 / 51



A Fundamental (but Difficult) Question

Registers are easy to understand (observable using gdb + info
registers).

Process State Model:
• What is ”a process’s memory”?

Recap Memory Hacking Takeaways 4 / 51



Step 1: Printing the address of main
#include <stdio.h>
int main() {

printf("%p\n", main);
}

What happens?
• Prints the memory address where the function main begins.
• Matches with objdump -d a.out:

0000000000001149 <main>:
1149: f3 0f 1e fa endbr64

• Also matches with info proc mappings in gdb:

0x555555555149

Recap Memory Hacking Takeaways 5 / 51



Step 2: Reading bytes from main

int x = *(int*)main;
printf("%x\n", x);

What happens?
• Casts main (a function pointer) to an int*.
• Reads the first 4 bytes of machine code at main.
• Example output: fa1e0ff3
• Matches with objdump -d a.out:

0000000000001149 <main>:
1149: f3 0f 1e fa endbr64

Recap Memory Hacking Takeaways 6 / 51



Step 3: Accessing an arbitrary address

int *q = (void*) 0x12345678LL;
int y = *q;
printf("%x\n", y);

What happens?
• Tries to dereference memory at 0x12345678.
• Process does not own that address.
• Results in a Segmentation Fault.

Recap Memory Hacking Takeaways 7 / 51



What Memory Access is Valid in the Address Space?

What type of pointer access would NOT cause a segmentation
fault?

char *p = random();

*p; // Load

*p = 1; // Store

Recap Memory Hacking Takeaways 8 / 51



How to View the Address Space of a Linux Process?

(Curious: How is pmap implemented?)

Recap Memory Hacking Takeaways 9 / 51



Process Address Space
Manual: man 5 proc

• /proc/[pid]/maps

• pmap [pid]

• gdb+info proc mappings

• Each segment of the process address space:
• Address range and permissions (rwxsp)
• Corresponding file: offset, dev, inode, pathname
• The manual provides detailed explanations

• Verified with the information from readelf -l

What else can we find using gdb miniHello and info proc
mappings?
• vvar (Virtual Variable Page)
• vdso (Virtual Dynamic Shared Object)
• vsyscall

Recap Memory Hacking Takeaways 10 / 51



vDSO: Fast time queries without syscalls
• A process has no concept of “time” by itself. It normally asks

the OS via a system call.
• System calls are costly. Linux maps a read-only shared page

and user-space helper functions (vDSO).
• Time data on this page is maintained by the kernel. User code

can read it directly, no kernel trap.
• Examples that use vDSO when possible: time(2),
gettimeofday(2).

• Try: strace -e trace=gettimeofday ./vdso to run
11 address space/vdso.c

• If vDSO is used, you see no gettimeofday syscall.

Recap Memory Hacking Takeaways 11 / 51

https://elixir.bootlin.com/linux/v6.12.6/source/lib/vdso/gettimeofday.c#L49
https://github.com/FSU-COP4610-F25/in-class-code


VDSO and VVAR: Communication Mechanism

• We do not need syscalls.
• What we need is a communication channel between user

space and the kernel.
• Shared Memory Page:

• In some extreme cases, a shared page can be read and written
by user programs.

• Periodic Updates: The OS periodically updates the shared
page.

• Synchronization: Spinlocks are used to protect the integrity of
read and write operations on this page.

Recap Memory Hacking Takeaways 12 / 51



Further Questions

execve creates the initial state of a process, including registers and
segments of memory.

Can we control the output of pmap?
• Modify the size of the segment in memory

• e.g., malloc to change the stack size
• gdb + inferiors to check the process
• !pmap [PID] to check the stack size

• Allocate large arrays on the stack...

Recap Memory Hacking Takeaways 13 / 51



Managing Process Address Space

Perspective from the State Machine:
• Address space = memory segments with access permissions

• Does not exist (inaccessible)
• Exists but inaccessible (read/write/execute not allowed)

• Management: Add/Remove/Modify a segment of accessible
memory

Question: What kind of system calls would you provide?

Recap Memory Hacking Takeaways 14 / 51



Memory Mapping System Calls

• Dynamically add, remove, or modify a region of a process’s
virtual memory.

• Two common mapping types:
1 Anonymous mapping: MAP ANONYMOUS, not backed by a file.
2 File-backed mapping: requires a fd (File Descriptor). Maps file

contents into the process’s address space. Widely used for
loaders, databases, and zero-copy I/O.

Recap Memory Hacking Takeaways 15 / 51



Memory Mapping System Calls

// Create and remove mappings
void *mmap(void *addr, size_t len, int prot, int flags,

int fd, off_t off);
int munmap(void *addr, size_t len);

// mprotect can change access rights (read, write,
execute) of an existing mapping.

int mprotect(void *addr, size_t len, int prot);

Example (anonymous): mmap(NULL, len, PROT READ|PROT WRITE,
MAP ANONYMOUS|MAP PRIVATE, -1, 0);

Example (file-backed): fd = open("data.bin", O RDONLY);

mmap(NULL, len, PROT READ, MAP PRIVATE, fd, 0);

Recap Memory Hacking Takeaways 16 / 51



Using mmap
Example 1: Allocating a Large Memory Space
• Instantaneous memory allocation

• mmap/munmap provides the mechanism for malloc/free.
• libc’s malloc directly invokes mmap for large allocations.

• Consider using strace/gdb to observe the behavior.

Example 2: Everything is a File
• Map a large file and access only part of it.

with open(’/dev/sda’, ’rb’) as fp:
mm = mmap.mmap(fp.fileno(),

prot=mmap.PROT_READ, length=128
<< 30)

hexdump.hexdump(mm[:512])

Recap Memory Hacking Takeaways 17 / 51



Hacking Address Spaces
How to Make Mods for Games

Recap Memory Hacking Takeaways 18 / 51



Game Cheat 1: Hacking Address Spaces

• A process (state machine) executes on a ”dispassionate
instruction machine.”

• The state machine is a self-contained world.
• But what if a process is allowed to access the address space

of another process?
• It implies the ability to observe or modify another program’s

behavior.
• Sounds pretty cool!

Examples of ”invading” address spaces:
• Debugging (gdb)

• !ps or !pmap in gdb a.out
• gdb allows inspecting and modifying the state of a program.

• Profiling (perf)
• Tools like perf help analyze the performance bottlenecks of a

program.

Recap Memory Hacking Takeaways 19 / 51



How gdb Interacts with ELF and Address Spaces

• How gdb Uses ELF Files
• ELF contains function symbols, variable locations, and

debugging metadata.
• gdb reads the ELF file to get debugging symbols.

• Accessing Another Process’s Address Space
• gdb can attach to a running process.
• It allows inspecting and modifying memory and registers.
• Achieved through system calls (e.g., ptrace in Linux).

Key Concept: The OS as an API and Object
• The OS provides APIs that allow a process to debug another.
• Can these APIs ensure security and prevent unauthorized

access?

Recap Memory Hacking Takeaways 20 / 51



Physical Intrusion into Address Spaces
Golden Finger: Directly Manipulate Physical Memory
• Sounds distant, but it was achievable during the ”cartridge” era!

• Today, we have tools like Debug Registers and
Intel Processor Trace.

• These tools assist systems in ”legally intruding” into address
spaces.

Recap Memory Hacking Takeaways 21 / 51

https://perfwiki.github.io/main/


Physical Intrusion into Address Spaces (cont’d)
Game Genie: A Look-up Table (LUT)

• Simple yet elegant: When the CPU reads address a and
retrieves x , replace it with y .

• Technical Notes (Patents, How did it work?)
Recap Memory Hacking Takeaways 22 / 51

https://tuxnes.sourceforge.net/gamegenie.html
https://patents.google.com/patent/EP0402067A2/en
https://www.howtogeek.com/706248/what-was-the-game-genie-cheat-device-and-how-did-it-work/


Game Genie as a Firmware
Game Genie as a Boot Loader
• Configures the Look-Up Table (LUT) and loads the cartridge

code.
• Functions like a simple ”Boot Loader.”

Recap Memory Hacking Takeaways 23 / 51



The Blurring Boundaries Between I/O Dev and Comp
• How can we have CPUs for various tasks?

Example: Displaying Patterns

#include <stdio.h>

int main() {
int H = 10;
int W = 10;

for (int i = 1; i <= H;
i++) {
for (int j = 1; j <= W;
j++)

putchar(j <= i ? ’*
’ : ’ ’);
putchar(’\n’);
}

}

Nintendo Entertainment System
(NES) Motherboard

Recap Memory Hacking Takeaways 24 / 51



The Challenge of Performance:

NES: 6502 @ 1.79MHz; IPC = 0.43
• Screen resolution: 256 x 240 = 61K pixels (256 colors)
• 60FPS ⇒ Each frame must complete within 10K instructions

• How to achieve 60Hz with limited CPU computing power?

Recap Memory Hacking Takeaways 25 / 51



NES Picture Processing Unit (PPU)

The CPU only describes the
arrangement of 8x8 tiles
• The background is part of a

larger image
• No more than 8

foreground tiles per line
• The PPU completes the

rendering
• A simpler type of ”CPU”

• Enjoy!

7 6 5 4 3 2 1 0
| | | | | | | |
| | | | | | + + Palette
| | | | + + - - Unimplemented
| | + - - - - - Priority
| + - - - - - - Flip horizontally
+ - - - - - - - Flip vertically

Recap Memory Hacking Takeaways 26 / 51

https://www.smbgames.be/super-mario-bros.php


Providing Rich Graphics with Limited Capability

Why do the characters in KONAMI’s Contra adopt a prone position
with their legs raised?
• Video

Recap Memory Hacking Takeaways 27 / 51

https://www.youtube.com/watch?v=8LnwsYL7Apk&t=21m50s


Better 2D Game Engine

What if we have more powerful processors?
• The NES PPU is essentially a ”tile-based” system aligned with

the coordinate axes.
• It only requires addition and bitwise operations to work.

• Greater computational power = More complex graphics
rendering.

2D Graphics Accelerator: Image ”Clipping” + ”Pasting”
• Supports rotation, material mapping (scaling), post-processing,

etc.
Achieving 3D
• Polygons in 3D space are also polygons in the visual plane.

• Thm. Any polygon with n sides can be divided into n − 2
triangles.

Recap Memory Hacking Takeaways 28 / 51



Simulated 3D with Clipping and Pasting
GameBoy Advance
• 4 background layers; 128 clipping objects; 32 affine objects

• CPU provides the description; GPU performs the rendering
(acting as a ”program-executing” CPU)

V-Rally; Game Boy Advance, 2002

Recap Memory Hacking Takeaways 29 / 51

https://www.youtube.com/watch?v=xNBSoI0NB7o


But We Still Need True 3D

Triangles in 3D space require correct rendering
• Modeling at this stage includes:

• Geometry, materials, textures, lighting, etc.
• Most operations in the rendering pipeline are massively

parallel

”Perspective correct” texture mapping (Wikipedia)

Recap Memory Hacking Takeaways 30 / 51



Solution: Full PS (Post-Processing)

Example: GLSL (Shading Language)
• Enables ”shader programs” to execute on the GPU

• Can be applied at various rendering stages: vertex, fragment,
pixel shaders

• Functions as a ”PS” program to calculate lighting changes for
each part

• Global illumination, reflections, shadows, ambient occlusion, etc.

Recap Memory Hacking Takeaways 31 / 51



Modern GPU: A General-Purpose Computing Device

A complete multi-core processing system
• Focuses on massively parallel similar tasks

• Programs are written in languages like OpenGL, CUDA, OpenCL,
etc.

• Programs are stored in memory (video memory)
• nvcc (LLVM) compiles in two parts

• Main: Compiles/links to a locally executable ELF
• Kernel: Compiles to GPU instructions (sent to drivers)

• Data is also stored in memory (video memory)
• Can output to video interfaces (DP, HDMI, ...)
• Can also use DMA to transfer to system memory

Recap Memory Hacking Takeaways 32 / 51



Example: PyTorch and Deep Learning

What is a ”Deep Neural Network”?
How do we ”train”?
• Requires computationally intensive tasks

class NeuralNetwork(nn.Module):
def __init__(self):

super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(

nn.Linear(28*28, 512), nn.ReLU(),
nn.Linear(512, 512), nn.ReLU(),
nn.Linear(512, 10), nn.ReLU(),

)
...
model = NeuralNetwork().to(’cuda’)

Recap Memory Hacking Takeaways 33 / 51



Dark Silicon Age and Heterogeneous Computing

Many components can perform the ”same task”
• The key is to choose the component with the most suitable

power/performance/time trade-off!

Examples of Components:
• CPU, GPU, NPU, DSP, DSM/RDMA

Recap Memory Hacking Takeaways 34 / 51



Game Cheat 2: Expanding Game Exploration

Address Space: Where is the ”Gold”?
• Includes dynamically allocated memory, with varying

addresses every time.
• Insight: Everything is a state machine.

• By observing the trace of state changes, you can identify the
valuable addresses.

Search + Filter
• Enter the game: exp = 4610.
• Perform an action: exp = 5370.
• Match the memory locations where 4610 → 5370 occurs.

• These memory locations are very few.
• Once found, you’re satisfied! Demo

Recap Memory Hacking Takeaways 35 / 51

https://xinliulab.github.io/FSU-COP4610-Operating-Systems/


Game Cheat 3: Automation with Precision

Repeating Fixed Tasks at Scale (e.g., 1 second, 5370 shots)

Enjoy!
• Example shown demonstrates automating repetitive actions

with precise timing.
• Such tools enable consistent execution of predefined tasks

without manual intervention.

Recap Memory Hacking Takeaways 36 / 51

https://js13kgames.com/games/spacebar-clicker/index.html


Implementing Precision Automation

Sending Keyboard/Mouse Events to Processes
• Developing Drivers (e.g., custom keyboard/mouse drivers)
• Leveraging System Window Manager APIs

• xdotool: Useful for testing, including plugins for VSCode
• ydotool
• evdev: Commonly used for live streaming or scripting key

sequences

Application in 2024: Implementing AI Copilot Agent
• Automating workflows: Text/Image Capture → AI Analysis →

Execute Actions

Recap Memory Hacking Takeaways 37 / 51

https://github.com/jordansissel/xdotool
https://github.com/ReimuNotMoe/ydotool
https://www.kernel.org/doc/html/latest/input/input.html


Game Cheat 4: Adjusting Logic Update Speed
Adjusting the Game’s Logic Update Speed
• For example, a certain mysterious company’s game is so slow

that both map traversal and combat feel unbearable.
• The gaming industry today has become so competitive that if a

new player’s progression path isn’t smooth, the game will be
heavily criticized.

Recap Memory Hacking Takeaways 38 / 51



Principle of Speed Modification: Theory

Program = State Machine
• ”Compute instructions” are inherently unaware of time.
• Using count for timing can lead to issues where the game

becomes unplayable on faster machines.
• Syscalls are the only way for a program to perceive time.

”Hijacking” Time-Related Syscall/Library Functions
• gettimeofday, sleep, alarm
• Replacing the system call’s code with our own code allows us

to alter the program’s perception of time.
• Similar to adjusting a clock to make it appear faster or slower.

Recap Memory Hacking Takeaways 39 / 51



Code Injection: Hooking Functions with Code

• Using a piece of code to hook the execution of a function.
• Allows tampering with the program’s logic and gaining control.

Recap Memory Hacking Takeaways 40 / 51



Hooking in Game Cheats
How Hooking is Used in Game Cheats
• Hooking intercepts and modifies game functions to

manipulate game behavior.
• Commonly used in ESP (Extra Sensory Perception) cheats,

Aimbots, and Wallhacks.
Methods of Hooking:
• DirectX/OpenGL Hooking: Modifies rendering functions like
D3D11Present to draw ESP overlays.

• System Call Hooking: Alters time-related functions (e.g.,
gettimeofday) to manipulate game physics.

• Memory Hooking: Modifies in-game variables (e.g., hp = 9999)
in real-time.

Example: ESP Wallhack
• Hooks rendering APIs to bypass depth checks.
• Modifies enemy rendering to make them visible through walls.

Recap Memory Hacking Takeaways 41 / 51



Custom Game Cheats
The Essence of ”Hijacking Code” is Debugger Behavior
• A game is also a program, and a state machine.
• A cheat tool is essentially a gdb designed specifically for the

game.

Example: Locking Health Points
• Create a thread to spin and modify:

while (1) hp = 9999;

• However, conditions like hp < 0 (e.g., instant death) may still
occur.

• Solution: Patch the code that checks hp < 0 (soft dynamic
updates).

Recap Memory Hacking Takeaways 42 / 51



Code Injection (cont’d)
”I heard that Devil Fruits are the incarnations of sea demons.
Eating one grants devil-like abilities, but in return, the sea will
reject the user.”

Enjoy!

Recap Memory Hacking Takeaways 43 / 51

https://www.youtube.com/watch?v=Uf2uAgYLsNo


Game Cheat 5: DMA
DMA (Direct Memory Access): A dedicated CPU for executing
”memcpy” operations
• Adding a general-purpose processor is too costly
• A simple controller is a better solution
• Supported types of memcpy:

• memory → memory
• memory → device (register)
• device (register) → memory

• Practical implementation: Directly connect the DMA controller to
the bus and memory

• Intel 8237A

Recap Memory Hacking Takeaways 44 / 51

https://pdos.csail.mit.edu/6.828/2018/readings/hardware/8237A.pdf


More on DMA

• CPU is not involved in copying data
• A process cannot access in-transit data
• PCI bus supports DMA

• Handles a large number of complex tasks

Recap Memory Hacking Takeaways 45 / 51



Why Does DMA Cheating Exist?

• Modern anti-cheat methods rely on detecting memory
modifications.

• Kernel-level anti-cheat software (e.g., Vanguard, BattleEye)
prevents direct process memory access.

• Reading memory via software (e.g., external cheats) is highly
detectable.

• DMA bypasses all software-based detection because it directly
accesses memory without CPU intervention.

Recap Memory Hacking Takeaways 46 / 51



How DMA Cheats Work
1 A second computer with a DMA capture card is used.
2 The card is installed in the main gaming PC via PCIe.
3 The DMA card reads game memory and extracts relevant

data (e.g., player positions).
4 The extracted data is sent to the second PC for processing.
5 The second PC renders an ESP (extra-sensory perception)

overlay, giving the player an unfair advantage.
6 Since the main PC runs no cheat software, anti-cheat solutions

fail to detect it.

Recap Memory Hacking Takeaways 47 / 51



Cheat Example: PCILeech

Recap Memory Hacking Takeaways 48 / 51



Why Is It Hard to Detect?

• No modification of game memory (only reading).
• No injected code, unlike traditional hacks.
• Appears as a legitimate PCIe device, making it difficult to

blacklist.
Current Anti-Cheat vs. DMA

Anti-Cheat Method Effectiveness Against DMA
Signature Scanning Ineffective (DMA is external)
Kernel-Level Hooks Ineffective (DMA doesn’t use system calls)
Code Integrity Checks Ineffective (No code modification)
Behavior Analysis Partially Effective (Detecting unnatural movements)

Recap Memory Hacking Takeaways 49 / 51



Future of Anti-DMA Methods

• Hardware-based solutions: Restricting PCIe device access via
BIOS/firmware.

• AI-based detection: Tracking suspicious player behavior.
• Encrypted memory: Preventing DMA from extracting useful

data.
• Currently, no effective universal countermeasure exists.

Recap Memory Hacking Takeaways 50 / 51



Takeaways: On Cheats and Code Injection
Cheats Can Also Serve “Good” Purposes:
• Live Kernel Patching: Enable “hot” updates without stopping

the system.
• Techniques, whether in computing systems, programming

languages, or artificial intelligence, are meant to provide
benefits to humans — for example, debugging tools and even
cheats can help game developers or testers improve
performance.

Ethics of Technology:
• Strong technology always has both “good” and “bad”

applications.
• Any misuse of technology to harm others is a violation of

integrity. Similarly, if cheats are used for malicious purposes in
games, we should also consider the moral implications and
use tools responsibly.

Recap Memory Hacking Takeaways 51 / 51

https://github.com/dynup/kpatch

	Recap
	Memory
	Hacking
	Takeaways

