
Lecture 5: Terminal and UNIX Shell
Terminal, Sessions and Process Groups, and Shell Programming

Xin Liu

Florida State University
xliu15@fsu.edu

COP 4610 Operating Systems
https://xinliulab.github.io/FSU-COP4610-Operating-Systems/

mailto:xliu15j@fsu.edu
https://xinliulab.github.io/FSU-COP4610-Operating-Systems/

Recap: Objects in an Operating System

We already know how to use system calls related to file descriptors
to access objects in the operating system:

open, read, write, lseek, and close.

The OS also provides system calls that can create objects within
the OS, such as:

mount, pipe, and mkfifo

Recap Terminal Sessions and Process Groups Shell Programming 1 / 37

Today’s topic

We know that the objects in an operating system are far more than
these. There are still many interesting ones we have not explored
in depth— the terminal, for example, is both fascinating and
unsettling.
Starting from the terminal emulator you use every day, we will
explore what exactly happens when you press Ctrl-C.
On this basis, we will then be able to implement our own multi-task
manager.

Recap Terminal Sessions and Process Groups Shell Programming 2 / 37

Terminal

Recap Terminal Sessions and Process Groups Shell Programming 3 / 37

Typewriter

QWERTY keyboard (1860s)
• The layout aimed to reduce jams by spreading common

letter pairs.
• The mechanism was fully mechanical, so each keystroke

needed firm force.

Recap Terminal Sessions and Process Groups Shell Programming 4 / 37

Legacy of the Typewriter Era

Shift
• Move the type mechanism or platen by one step to switch the

character set.
CR & LF
• \r CR (Carriage Return): return the print head to the start of

the line. Example: print("Hel\rlo")
• \n LF (Line Feed): advance the paper by one line.
• On Unix, \n represents a newline; many terminals render it as

CR+LF.
Tab & Backspace
• Cursor movement. A common typo fix on typewriters was
Backspace then - to strike through a character.

Recap Terminal Sessions and Process Groups Shell Programming 5 / 37

Teletypewriter (TTY)

Built for telegraph service (print at both ends)
• Telex (teleprinter exchange), 1920s, before digital

computers
• Uses the Baudot code (5-bit)
• Mapped naturally onto early computer terminals

Legacy: tty, stty, /dev/tty, getty

Recap Terminal Sessions and Process Groups Shell Programming 6 / 37

Teletypewriter (cont’d)

Teletype Model 28 (1951)

Recap Terminal Sessions and Process Groups Shell Programming 7 / 37

VT100: The Classic Terminal
Video Terminal (DEC, 1978)
• Became the de facto industry standard
• First terminal with full ANSI escape sequence support
• 80×24 character screen became the standard layout
• Many later devices advertised “VT100 compatible”

Recap Terminal Sessions and Process Groups Shell Programming 8 / 37

ANSI Escape Sequences

Format:
• General form: ESC [parameters m

• ESC = \033 (ASCII 27)
• Parameters control text style, color, etc.

Example:
• \033[01;31mHello, OS World\033[0m

• 01 = bold (bright)
• 31 = red foreground
• 0 = reset to normal

• Effect: Hello, OS World will appear in bold red, then style
resets.

Try it: 10 miniHello.s

Recap Terminal Sessions and Process Groups Shell Programming 9 / 37

https://github.com/FSU-COP4610-F25/in-class-code

More Fun Demos with Terminal

• telnet towel.blinkenlights.nl (ASCII movie; exit with
Ctrl-] then q)

• dialog --msgbox ’Hello, OS World!’ 8 32 (pop up a
message box in the terminal)

• ssh sshtron.zachlatta.com (play an online game in your
terminal)

Recap Terminal Sessions and Process Groups Shell Programming 10 / 37

Elegant Weapon for a More Civilized Age

• Long ago, on green-screen terminals (like the VT100), pioneers
built the powerful and elegant UNIX operating system.

• Today, the latest iPhone in your pocket has vastly more
computing power than all of NASA’s Apollo moon landing
computers combined.

• And we use this epic level of power... to play Angry Birds.
• Don’t laugh, I do this too.

Recap Terminal Sessions and Process Groups Shell Programming 11 / 37

Computer Terminals: How They Work
As an output device
• Receives bytes over UART and renders characters on the

screen
• ANSI escape sequences control cursor and color because the

stream is just text
As an input device
• Sends ASCII codes for key presses over UART
• Many codes are control characters (CR, LF, TAB, BS)

Recap Terminal Sessions and Process Groups Shell Programming 12 / 37

Today, we emulate terminal: Pseudo Terminal (PTY)

• A bidirectional channel like a pipe.
• Master side: connected to the terminal emulator.
• Slave side: connected to a shell or another program.
• Example slave device: /dev/pts/0.

How PTYs are created
• Created by ssh, terminal apps, or tmux.
• openpty(): request a new terminal via /dev/ptmx

• Returns two file descriptors (master and slave); the slave
appears under /dev/pts/N.

Have Fun with PTYs:
• Open two terminals
• Run tty to see each PTY (e.g., /dev/pts/2, /dev/pts/3)
• Try: echo hello > /dev/pts/3

Recap Terminal Sessions and Process Groups Shell Programming 13 / 37

Terminal Emulator

You can implement this
• Use openpty + fork.
• Child: redirect stdin/stdout/stderr to the PTY slave.
• Parent: read from the PTY master to draw the screen and write

keyboard input back to the master.
Extended escape sequences for images
• Some emulators, e.g., Kitty, add image protocols via ESC

sequences.
• Start with \033[... and end with \033.
• You can control size, position, and animation.

Recap Terminal Sessions and Process Groups Shell Programming 14 / 37

Terminal: More Capabilities

Terminal modes
• Canonical mode: line-oriented. Data is sent to the program

after Enter. The terminal provides line editing.
• Non-canonical (raw) mode: character-oriented. Each byte is

delivered immediately. Used by tools like vim and ssh.
Attribute control
• APIs: tcgetattr / tcsetattr.
• You can control echo, signal generation, and special characters.
• Example: turn off echo when typing a password.

Recap Terminal Sessions and Process Groups Shell Programming 15 / 37

Sessions and Process
Groups

Recap Terminal Sessions and Process Groups Shell Programming 16 / 37

Who Is the Parent Process?
• When you launch a program from a terminal, who is its parent

process?
• To check, run ps -p <pid> -o pid,ppid,cmd and read the
PPID.

Luke, I am your father!

Recap Terminal Sessions and Process Groups Shell Programming 17 / 37

How a Program Is Paired with a Terminal

Where a session starts
• Local login: kernel → init → getty
• Remote login: sshd → fork → openpty

• stdin, stdout, stderr are attached to the allocated TTY
• VS Code terminal: fork → openpty

Why the program sees that terminal
• login is just a user program
• fork() inherits file descriptors

• The child process keeps the same terminal device

Recap Terminal Sessions and Process Groups Shell Programming 18 / 37

Finally, we can build a User Interface
From TTY to GUI

• Kernel provides input, display, and audio drivers.
• Graphics path: DRM/KMS → display server (Wayland or Xorg) →

compositor/window manager → desktop environment (KDE,
GNOME).

• Apps draw with Qt or GTK using OpenGL or Vulkan.
• Input events go to the compositor then to the focused app.
• Apps talk over IPC (Wayland or X11), each app is a process with its

own resources.

Recap Terminal Sessions and Process Groups Shell Programming 19 / 37

Not Graphical, But Command-Line

UNIX Shell: a classic of the terminal era
• The peak of the command-line interface (CLI).

Recap Terminal Sessions and Process Groups Shell Programming 20 / 37

Process Management

Many processes share one terminal. Some run in the foreground, some
in the background. Which one is stopped by Ctrl-C?
The terminal does not decide
• It only sends bytes.
• Ctrl-C = End of Text (ETX), \x03.
• Ctrl-D = End of Transmission (EOT), \x04.
• See current bindings with stty -a.

The OS decides
• The TTY driver interprets the control byte.
• It delivers a signal to the foreground process group (e.g.,

SIGINT for Ctrl-C).

Recap Terminal Sessions and Process Groups Shell Programming 21 / 37

The ”current process” on a terminal

As OS designers, when the TTY receives Ctrl-C we must identify
the current process set.
How would you design it?
• fork() creates a tree of processes (with possible reparenting).
• A foreground job may contain multiple processes, for example

a pipeline.
• Ctrl-C should signal all processes in the foreground job.
• Background jobs must not be affected.

Hint: use process groups and sessions to represent these sets on a TTY.

Recap Terminal Sessions and Process Groups Shell Programming 22 / 37

Sessions and Process Groups

Recap Terminal Sessions and Process Groups Shell Programming 23 / 37

Sessions and Process Groups (Cont.)
Key ideas
• Session (SID): a set of process groups. Created by a session

leader via setsid(). A session may have one controlling
terminal.

• Process group (PGID): a set of related processes treated as
one job. The group leader’s PID equals the PGID.

• Foreground group: the PGID currently attached to the TTY. It
receives job-control signals.

• Background groups: run without TTY input.
How shells use them
• The shell is the session leader (SID = shell PID).
• Each pipeline is put into its own PGID; the first child becomes

the group leader.
• The TTY stores foreground PGID and the session’s SID.

Signal routing
• Ctrl-C⇒ kernel sends SIGINT to the foreground PGID.
• Ctrl-Z⇒ SIGTSTP to the foreground PGID.

Recap Terminal Sessions and Process Groups Shell Programming 24 / 37

Sessions and Process Groups: Mechanics

Session ID (SID)
• A child inherits its parent’s SID.
• One session is associated with one controlling terminal.
• When the session leader exits, the kernel sends SIGHUP to the

session.
Process Group ID (PGID)
• A session contains multiple process groups. A TTY has exactly

one foreground group.
• The terminal records the foreground PGID.
• On Ctrl-C, the OS delivers SIGINT to all processes in the

foreground group.

Recap Terminal Sessions and Process Groups Shell Programming 25 / 37

Sessions & Process Groups: APIs

Session (SID)
• setsid() — create a new session and detach from the

controlling terminal.
• getsid(pid) — query a process’s session ID.

Process Group (PGID)
• setpgid(pid, pgid) — create/join a process group;
getpgid(pid) — query.

• tcsetpgrp(fd, pgid) / tcgetpgrp(fd) — set/get the
foreground PGID of a TTY (quirky but standard).

Related identity knobs
• uid, euid, suid — real, effective, and saved user IDs.
• For background: Setuid Demystified.

Recap Terminal Sessions and Process Groups Shell Programming 26 / 37

Yes, historical baggage

But it is part of POSIX
• The future of software is hard to predict

Rethink the problem
• We do not need to bind a process to a device
• Let managers emulate it: tmux, GNOME, others

• Window manager needs only the idea of a process group
• Close a window → kill the whole group

• Android: each app runs as a different user
• Force stop → kill all processes of that user

• Snap: apps run in a sandbox
• AppArmor + seccomp + namespaces

Recap Terminal Sessions and Process Groups Shell Programming 27 / 37

What does Ctrl-C actually do?

signal()

• Register a handler function f for a signal.
• The kernel records f. When SIGINT is delivered, it arranges to

run f when the process returns to user mode.
• Default action of SIGINT is to terminate if no handler is set.

kill()

• Send a signal to a PID or a process group.
• On terminals, the TTY sends SIGINT to the foreground process

group.
Prefer sigaction()
• More reliable control than signal().
• Lets you set a mask and flags such as SA RESTART.

Recap Terminal Sessions and Process Groups Shell Programming 28 / 37

(UNIX) Shell: A
Programming Language

Recap Terminal Sessions and Process Groups Shell Programming 29 / 37

Multitasking is not all of HCI
• Windows 3.2 (1992): Program Manager showed many

windows, not great workflows.
• More windows do not mean better interaction.
• Users still had to break goals into steps and keep switching

context.
• Good UI is task- and goal-oriented, not window-oriented.

Recap Terminal Sessions and Process Groups Shell Programming 30 / 37

The Shell Programming Language
UNIX users are hackers
UNIX Shell is a tiny text-substitution language
• One data type: string.
• Do not support arithmetic.

Mechanics
• Command substitution: $(...) Process substitution: <(
...).

• Redirection: cmd > file cmd < file cmd 2>
/dev/null.

• Sequencing: cmd1 ; cmd2 cmd1 && cmd2 cmd1 ||
cmd2.

• Pipe: cmd1 | cmd2.
• These expand to syscalls: open, dup2, pipe, fork, execve,
waitpid.

Recap Terminal Sessions and Process Groups Shell Programming 31 / 37

Example: Implementing Redirection
Using the property of child process inheriting file descriptors
• The parent process opens files, then passes them to the child

process
• It turns out Windows API is more ”elegant”

int fd_in = open(..., O_RDONLY | O_CLOEXEC);
int fd_out = open(..., O_WRONLY | O_CLOEXEC);

int pid = fork();
if (pid == 0) {

dup2(fd_in, 0);
dup2(fd_out, 1);
execl(...);

} else {
close(fd_in);
close(fd_out);
waitpid(pid, &status, 0);

}

Recap Terminal Sessions and Process Groups Shell Programming 32 / 37

Read The FXXK Manual (RTFM)

man sh: dash — command interpreter (shell)
• dash is the standard command interpreter for the system. The

current version of dash is in the process of being changed to
conform with the POSIX 1003.2 and 1003.2a specifications for
the shell.

• The shell is a command that reads lines from either a file or
the terminal, interprets them, and generally executes other
commands. It is the program that is running when a user logs
into the system (although a user can select a different shell
with the chsh(1) command).

Recap Terminal Sessions and Process Groups Shell Programming 33 / 37

UNIX Shell: Advantages

Advantages: Efficient, Concise, Precise
• A kind of ”natural programming language”: one command line,

coordinating multiple programs
• make -nB | grep ...
• Best suited for quick & dirty hackers

Recap Terminal Sessions and Process Groups Shell Programming 34 / 37

UNIX Shell: Advantages Come with Drawbacks

Inherent Limitations
• The shell’s design was constrained by the computing power,

algorithms, and engineering capability of the 1970s.
• Later generations had to live with the flaws (PowerShell: “I am

good, but nobody uses me”)

Example: Operation “Precedence”?
• ls > a.txt | cat

• I already redirected output to a.txt, so does cat receive no
input?

• Behavior differs between bash and zsh
• That’s why scripts often use #!/bin/bash, or even #!/bin/sh,

to maintain compatibility

Text Data: “Use at Your Own Risk”
• Whitespace = disaster

Recap Terminal Sessions and Process Groups Shell Programming 35 / 37

Another Interesting Example

$ echo hello > /etc/a.txt
bash: /etc/a.txt: Permission denied

$ sudo echo hello > /etc/a.txt
bash: /etc/a.txt: Permission denied

Recap Terminal Sessions and Process Groups Shell Programming 36 / 37

Takeaways

Through the shell, we illustrate the true meaning of ”building an
entire world of operating system applications on top of system calls” :
The OS API and applications evolve together in a spiral manner.
New application needs lead to new operating system features.
UNIX provides us with a very concise and stable interface (fork,
execve, exit, pipe, ...).
Despite its heavy historical baggage, it still works remarkably well
today.
• Looking Ahead: What is the future of Shell (CLI/GUI)?

Recap Terminal Sessions and Process Groups Shell Programming 37 / 37

	Recap
	Terminal
	Sessions and Process Groups
	Shell Programming

