
Lecture 4: Programs and Processes
Definition, Creation, and Management

Xin Liu

Florida State University
xliu15@fsu.edu

COP 4610 Operating Systems
https://xinliulab.github.io/FSU-COP4610-Operating-Systems/

mailto:xliu15j@fsu.edu
https://xinliulab.github.io/FSU-COP4610-Operating-Systems/

Recap of the Last Two Lectures

• A program can be viewed as a state machine, and running
code means state transitions.

• Our code itself can only change its own internal state.
• To affect anything outside the program, we must use system

calls to go through the operating system.

Recap Definition Creation Process Management 1 / 38

Abstractions
This gives us a useful abstraction:

Program
Computation + System Calls

Operating System
System Calls + Objects

System Call Interface:
• The system-call interface links programs and the OS.
• In UNIX, everything is a file.
• All resources are accessed and controlled through file

descriptors (FDs).
• Pipes allow us to connect programs by wiring one FD’s output

to another FD’s input.

Recap Definition Creation Process Management 2 / 38

Transition to Today

• When we discussed FD, dup, and shell, we were talking about
processes.

• Even in the state-machine view, the key question is: what is the
state?

• The answer is: the process.

We usually write a single program that starts from the main
function, runs through, and ends at return. The operating system
must provide us with the ability to create processes—otherwise,
how could so many programs run inside the OS?

Today’s topic: What a process is, and how to create and
manage processes.

Recap Definition Creation Process Management 3 / 38

Porgrams and Processes

Recap Definition Creation Process Management 4 / 38

Getting Started

Virtualization
• One of the most fundamental abstractions that the OS

provides to users: the process.
• Treat the physical computer as if it were a set of “virtual

computers.”
• Each program runs as if it has its own dedicated machine.

Recap Definition Creation Process Management 5 / 38

Program vs. Process

#include <unistd.h>

int main() {
while (1) {

write(1, "Hello, World!\n", 13);
}

}

• A program is a static description of a state machine.
• It describes all possible states of the program.

• When a program (state) is running, it becomes a process.
• It asks OS for system calls.
• It asks OS to allocate resources such as memory, registers and

CPU time.
• It has its own state, which includes the program counter,

registers, memory, and open file descriptors.
• Multiple processes can run the same program.

Recap Definition Creation Process Management 6 / 38

Process State in the OS

• A program can directly manage its internal state (e.g.,
variables, control flow).

• Some parts of the process state are maintained outside the
program, by the OS.

• Example: the Program Counter (PC) – managed by the CPU.
• Example: the Process ID (PID) – assigned and managed by the

OS.
• To access such information, a program must use system calls.

• e.g., getpid() returns the current process ID.

ps ax | grep 12345 # replace 12345 with your PID

• ps ax: list all processes, including those without a terminal.
• | grep: filter the lines to keep your PID.

Recap Definition Creation Process Management 7 / 38

/proc

• A kernel-provided virtual filesystem exposing process and
system info.

• Each running process has a directory: /proc/<pid>.
• Common entries: status, cmdline, cwd, exe, fd/, environ,
task/.

• Global info examples: /proc/cpuinfo, /proc/meminfo.
• Files under /proc are generated by the kernel. Regular files

live on real filesystems.
Try it: 7 proc

Recap Definition Creation Process Management 8 / 38

https://github.com/FSU-COP4610-F25/in-class-code

In-Class Quiz: PID Limits and Wraparound

You can continue to ask ChatGPT:
Prompt: I see process IDs increase when new processes start. Are
PIDs limited? If yes, do they wrap around and get reused? What is
the actual limit on Linux and how can I check it?

Recap Definition Creation Process Management 9 / 38

Creation

Recap Definition Creation Process Management 10 / 38

How the First Process Is Born (Overview)

• 1) Power on → Firmware (BIOS/UEFI)
• 2) Firmware detects hardware devices
• 3) Firmware chooses a boot device
• 4) Boot loader (e.g., GRUB) starts
• 5) Boot loader loads the Kernel and initramfs
• 6) Kernel takes control and initializes hardware
• 7) Kernel executes PID 1 (/sbin/init, usually systemd)
• 8) systemd starts services, and the login prompt is ready

Recap Definition Creation Process Management 11 / 38

Step 1: Firmware
• A low-level software embedded in a hardware chip on the

motherboard. It’s the very first code the CPU executes after
power-on.

• BIOS vs. UEFI (Two Main Firmware Interfaces)
• BIOS (Basic Input/Output System): The legacy firmware

interface. It has limited features, runs in 16-bit mode, and has
limitations on disk size (¡2TB) and partitions.

• UEFI (Unified Extensible Firmware Interface): The modern
successor. It is powerful, featuring a graphical interface,
networking capabilities, Secure Boot, and overcomes the
limitations of BIOS.

• Core Tasks of the Firmware
• POST (Power-On Self-Test): It checks that critical hardware like

the CPU, RAM, and graphics card are functioning correctly.
• Initialize Hardware: It prepares the most basic hardware

environment for the next boot stage.
• Select Boot Device: It finds a bootable device according to a

preset order (e.g., HDD, USB, Network) and loads the boot
loader from it.

Recap Definition Creation Process Management 12 / 38

Step 2: The Boot Loader
• A small program that runs after the firmware and before the

operating system kernel. Its core mission is to find the OS
kernel, load it into memory, and then hand over control to it.

• GRUB (GRand Unified Bootloader)
• The most common boot loader for Linux systems. It is very

powerful, supports multi-booting, and provides a menu for the
user to select an OS or kernel version.

• Where is it located?
• For legacy BIOS systems, the initial boot code resides in the

Master Boot Record (MBR), the first 512-byte sector of the disk.
The MBR’s job is to load the next stage of GRUB.

• For modern UEFI systems, which use the GUID Partition Table
(GPT), GRUB is loaded as an EFI application from a special
partition called the EFI System Partition (ESP).

• Key Operations of GRUB
• Loads the Kernel and initramfs:

• initramfs (Initial RAM Filesystem): A temporary, in-memory
root filesystem. It contains essential drivers (e.g., for SATA or
NVMe controllers) that the kernel needs to access the actual hard
disk. Without it, the kernel might not be able to find and mount
the real root filesystem.

• Passes Kernel Command Line Arguments: It passes important
information (like root=/dev/sda1) to the kernel, telling it
where to find the root filesystem and other boot options.

Recap Definition Creation Process Management 13 / 38

Step 3: Kernel Startup

• Initialize Core Subsystems: It sets up memory management
(e.g., paging), the process scheduler, device driver frameworks,
etc.

• Mounts the Root Filesystem:
• First, it uses the drivers in the initramfs (loaded by GRUB) to

detect the hard disk.
• Then, it mounts the real root filesystem (/) from the disk. From

this point on, the system can access all the files on the hard
drive.

• Creates Kernel Threads: It starts background processes that
run only in kernel space to handle system tasks, such as
scheduling (kthreadd), interrupt handling, etc.

• Prepares to Start the First User-Space Process: Once all
low-level setup is complete, the kernel’s final step is to create
the very first ”normal” process in the system.

Recap Definition Creation Process Management 14 / 38

Step 4: The Birth of PID 1

• PID 1: The ”Ancestor” of User Space
• The first user-space process created by the kernel. Its Process ID

is always 1.
• It is the ancestor of all other user processes. If PID 1 terminates

unexpectedly, the entire system will experience a Kernel Panic.
• /sbin/init and systemd

• The program the kernel executes is hardcoded to the path
/sbin/init.

• In modern Linux distributions, /sbin/init is usually a
symbolic link to systemd.

• systemd is a modern init system and service manager,
responsible for starting and managing all system services.

• PID 1’s Special Duty: Adopting Orphans
• When a parent process exits before its child, the child becomes

an ”orphan process”. PID 1 automatically ”adopts” these
orphans and cleans up their resources after they terminate,
which prevents them from becoming ”zombie processes”.

Recap Definition Creation Process Management 15 / 38

https://elixir.bootlin.com/linux/v6.10.9/source/init/main.c#L1523

Step 5: Userspace Is Ready

• The Job of systemd
• Starts Services: systemd reads configuration files and starts

required system services in parallel according to their
dependencies, such as networking (networkd), SSH (sshd), etc.

• Prepares for User Login
• systemd starts getty processes. getty (get teletype) monitors

a terminal line (tty), displays a login prompt, and then executes
the login program to verify credentials.

• User Login and the Shell
• After successful authentication, the login program starts a

shell (e.g., bash) for the user.
• The shell executes startup scripts (like /etc/profile,
/̃.bashrc) to configure the user’s environment (e.g., the PATH
variable).

• From now on, every command you type (like ls or docker run)
creates a new process, which is a child of your shell process.

Recap Definition Creation Process Management 16 / 38

Booting Sequence: From Reset to PID 1

1 Power on; CPU jumps to firmware in ROM (BIOS or UEFI).

2 Firmware tests hardware and picks a boot device.

3 Boot loader (e.g., GRUB) is loaded from the device.

4 Boot loader loads the Linux kernel and initramfs into memory, then
jumps to the kernel.

5 Kernel initializes memory and drivers, mounts initramfs, then
mounts the real root filesystem.

6 Kernel starts the first user-space process: PID 1 (/sbin/init,
usually systemd).

7 PID 1 starts services and login; your shell runs.

Recap Definition Creation Process Management 17 / 38

Can We Really See Every Booting Instruction?

• ”Talk is cheap. Show me the code.” — Linus Torvalds
• Computer system axiom

• If you can imagine it, someone has already done it.
• Simulation option: QEMU

• Created by Fabrice Bellard
• A fast and portable dynamic translator (USENIX ATC’05)
• Powers Android emulators and many tools

• Real machine option: JTAG debugger
• Hardware debug registers and pins
• Integrates with gdb

Recap Definition Creation Process Management 18 / 38

https://www.qemu.org/

A Side Story: The CIH ”Hardware” Virus (1998)
• We normally think of viruses as a software problem. You can

always format the disk and reinstall the OS to fix it. But what if
a virus could attack the computer’s firmware (BIOS)?

• The Hidden Flaw: Normally, the BIOS chip is read-only. But on
motherboards of that era, manufacturers left a ”secret
sequence” to unlock it for updates. This secret was poorly
guarded and documented.

• The Attack: The CIH virus, running as a normal program, used
this sequence to unlock the BIOS. Then, it completely erased
the firmware, filling it with garbage.

Recap Definition Creation Process Management 19 / 38

The CIH ”Hardware” Virus (Cont.)

• The Result: A hard-bricked PC. Without its basic instructions in
the BIOS, the computer couldn’t even start.

• This is why it became known as a hardware-level virus. The
only fix was not software, but a physical one: using a special
programmer to re-flash the chip, or in many cases, replacing
the motherboard entirely.

• Chen Ing-Hau, the author of CIH, was arrested but not
convicted.

Recap Definition Creation Process Management 20 / 38

Process (State Machine)
Management API

Recap Definition Creation Process Management 21 / 38

Process-Management System Calls

Operating system = manager of state machines
• Process management = state machine management

Recap Definition Creation Process Management 22 / 38

1. Process Creation: Fork()

Intuitive Idea (like Windows / POSIX spawn)
• Create a new state machine: spawn(path, argv)
• Terminate a state machine: exit()

• The name of exit() is used by libc

UNIX Answer
• Copy an existing state machine: fork()
• Replace its program image: execve(path, argv)

• Terminate the state machine: exit()

Recap Definition Creation Process Management 23 / 38

Why UNIX Uses fork+exec

UNIX Philosophy: keep system calls simple, combine flexibly
• fork() creates an identical child process
• Child process can modify file descriptors, environment, etc.
• Then call execve() to load a new program
• Shell fits naturally:

• Shell fork()s a child
• Child execve()s user command

Comparison
• Intuition: spawn = create + run (one step)

• UNIX: fork + exec (two steps, more flexible)

Recap Definition Creation Process Management 24 / 38

Fork(): Create a State Machine
pid_t fork(void);

We now have a ”state machine”.
• We only need an API to create it.
• UNIX answer: fork

• Make a full copy of the state machine (memory and register
context).

Recap Definition Creation Process Management 25 / 38

Process Tree: pstree

Process creation forms a process tree
• A → B → C: if B exits, what is ppid(C)?
• It seems simple to “go up” one level.
• In fact it is more complex:

• A child notifies its parent when it terminates via SIGCHLD.
• The parent can catch this signal.
• The naive “go up” rule can be wrong.

How can we verify this?
• Write a small program to observe the behavior. Try it: 8 pstree

Recap Definition Creation Process Management 26 / 38

https://github.com/FSU-COP4610-F25/in-class-code

Orphan Processes and Reparenting
Definition
• If parent B exits while child C still runs, C becomes an orphan.
• The kernel immediately reparents C to an adopter.

Who adopts?
• The nearest subreaper if present

(prctl(PR SET CHILD SUBREAPER)).
• Otherwise PID 1 in the same PID namespace (init or systemd).

Effects
• ppid(C) changes to the adopter’s PID.
• C keeps its own PID, open files, and memory state.

Orphan vs. Zombie
• Zombie: the child has exited but no one has called wait.
• Orphan: the child runs but its parent has exited.
• The adopter will call wait* and reap the child at exit.

Note on containers
• In a PID namespace the adopter is that namespace’s PID 1.

Recap Definition Creation Process Management 27 / 38

Behavior of fork()

Immediate copy of the state machine
• Copies all state as a snapshot

• CPU registers and every byte of memory
• Caveat: the process also has state in the OS such as ppid,

open files, and signals
• Be careful with how these states are copied
• On failure it returns -1

• errno explains the reason (see man fork)
How to tell the two processes apart?
• The new process receives return value 0

• The caller receives the child PID, forming the parent-child
relation

Recap Definition Creation Process Management 28 / 38

Understanding Behavior of fork()

Try it: 9 forkHello.c

#include <stdio.h>
#include <unistd.h>
int main() {

for (int i = 0; i < 2; i++) {
fork();
printf("Hello\n");

}
}

Execution: Run the above program using the following commands:

1 gcc 9 forkHello.c

2 ./a.out

3 ./a.out | cat

Recap Definition Creation Process Management 29 / 38

https://github.com/FSU-COP4610-F25/in-class-code

Understanding Behavior of fork() (Cont.)

Behavior Analysis:
• Running ./a.out directly produces a different number of lines

compared to ./a.out | cat.
• Following the principle that ”the machine is always right”, we

analyze the cause:
• Hypothesis: libc buffering effect.
• Verification: Compare system call sequences using strace.

Buffering Control:
• Use setbuf(3) or stdbuf(1) to manage standard

input/output buffering.

man setbuf

Recap Definition Creation Process Management 30 / 38

Understanding Behavior of fork() (Cont.)

When does the OS use line buffering?
- The operating system uses line buffering when writing to a

terminal, meaning output is sent immediately when a newline
character (\n) is encountered.

- If output is redirected (e.g., through a pipe), the standard
output switches to full buffering, meaning data is only written
when the buffer is full or when the program terminates.
fork() creates an exact copy of the calling process, replicating
every bit of its state, including the contents of buffers:
• The child process receives 0 as the return value.
• The parent process receives the child process ID.
• Other than the return value, the parent and child processes

are identical and execute in parallel in the operating system.

Recap Definition Creation Process Management 31 / 38

Fork Bomb
Creating new state machines requires resources
• Continuously creating processes will eventually crash the

system.
• In the past a bad program could freeze the lab. Modern Linux

has OOM protection, so the kernel kills the process instead.
• Do not run this on our campus computer systems!

• A quick story: my PhD student Jackie did this as an undergraduate. He
did not realize it was a bomb-like script. The department servers
crashed at midnight. The chair had to go to the lab and power off the
machines. There was no punishment. He was told not to do it again.

Recap Definition Creation Process Management 32 / 38

Code Analysis: Fork Bomb
:(){ # define a function named ":" (bash allows

symbol names)
: | : & # call ":" twice via a pipeline; each side runs
in a child shell

"&" backgrounds the pipeline so this function
returns immediately

}; : # call ":" once -> spawns more -> exponential
growth

f(){ # define function f
f | f &

}
f # single trigger causes 1,2,4,8,... processes

Analogy to Nuclear Fission:
• A heavy atomic nucleus (U-235/Pu-239) is hit by a neutron,

splitting into two lighter nuclei, releasing more neutrons.
• This results in self-replication.

Recap Definition Creation Process Management 33 / 38

2. Reset a State Machine

int execve(const char *filename, char * const argv[],
char * const envp[]);

UNIX provides one API to reset the state machine
• Replace the current process image with the initial state

described by an executable file.
• OS-kept state does not change: PID, working directory, open

files.
• Use O CLOEXEC to close a file on exec.

execve is the only system call that executes a program
• It is the first system call you see in strace.

Recap Definition Creation Process Management 34 / 38

execve() sets the initial process state

argc & argv: command-line arguments
• The main parameters are provided by execve.

envp: environment variables
• View with the env command: PATH, PWD, HOME, DISPLAY, PS1,

. . .
• Use export to set variables for child processes.

export TK_VERBOSE=1

Program is correctly loaded into memory
• Code and data are mapped, the PC is at the entry point.

Recap Definition Creation Process Management 35 / 38

Example: PATH controls search order

• PATH = a list of directories searched left-to-right.
• Who uses it: the shell and execvp() when only a name is given.
• gcc calls the assembler as; it is found via PATH.

[pid] execve("/usr/local/sbin/as", ...) = -1
[pid] execve("/usr/local/bin/as", ...) = -1
[pid] execve("/usr/sbin/as", ...) = -1
[pid] execve("/usr/bin/as", ...) = 0 # found

here

PATH="" /usr/bin/gcc a.c # no search path ->
fails to find ’as’

PATH="/usr/bin" gcc a.c # add dir with ’as’
-> works

Recap Definition Creation Process Management 36 / 38

3. Destroy the State Machine

void _exit(int status);

No debate here
• Immediately destroy the state machine and pass one status

value.
• The parent process can retrieve this value.

Recap Definition Creation Process Management 37 / 38

Takeaways

• Linux builds the entire application program world from an
initial process (state machine).

• Through fork, execve, and exit, we can create many child
processes and then execute them concurrently.

Recap Definition Creation Process Management 38 / 38

	Recap
	Definition
	Creation
	Process Management

