
Lecture 3: Interacting with the OS
OS Strucutre, System Call, Objects, File Descriptor, and Pipes

Xin Liu

Florida State University
xliu15@fsu.edu

COP 4610 Operating Systems
https://xinliulab.github.io/FSU-COP4610-Operating-Systems/

mailto:xliu15j@fsu.edu
https://xinliulab.github.io/FSU-COP4610-Operating-Systems/

Recap 1: Program Pipeline

• You write a program, for example HelloWorld.c.
• The code goes through four steps: preprocessing, compilation,

assembly, and linking.
• The compiler turns C into assembly and applies optimization.
• Optimization may reorder or change instructions, so the final

machine code is not predictable from the source alone.
• Think of two “compilers”: the compiler changes your program,

and the CPU changes the execution order with reordering and
speculation.

• The computer follows the optimized machine code.
• The computer is always right!
• Tip: Never assume the computer runs your code in the

order you wrote.

Recap OS Structure System Call Objects File Descriptors and Pipes 1 / 61

Recap 2: Program Boundary

• A program is a state machine.
• Running code means state transitions.
• Your code can only change its own internal state.

• Example: your HelloWorld.c prints text, then it exits because
the OS already sets up start and call exit for you.

• If you write only start and use no libraries, nothing will call
exit. You must make the exit system call yourself.

• Anything outside the program state is done by the OS through
a system call.

Recap OS Structure System Call Objects File Descriptors and Pipes 2 / 61

OS Structure

Recap OS Structure System Call Objects File Descriptors and Pipes 3 / 61

Abstract View of Components of Computer

• OS is a program that acts as an intermediary between a user of
a computer and the computer hardware.

• OS hides the complexity and limitations of hardware from
application programmers

Recap OS Structure System Call Objects File Descriptors and Pipes 4 / 61

A View of Operating System Services

Recap OS Structure System Call Objects File Descriptors and Pipes 5 / 61

Operating System Services

• User interface
• Almost all operating systems provide a user interface (UI).
• Forms: command-line (CLI), graphical (GUI), touch-screen, batch.

• Program execution
• Load a program into memory, run it, then terminate.
• Termination can be normal or abnormal (error).

• I/O operations
• A running program may request I/O.
• I/O may involve files or external devices.

• File-system manipulation
• Read and write files and directories.
• Create and delete files and directories.
• Search, list file information, and manage permissions.

Recap OS Structure System Call Objects File Descriptors and Pipes 6 / 61

Operating System Services (Cont.)
• Communications

• Processes exchange information on the same computer or
across a network.

• Methods include shared memory and message passing (packets
moved by the OS).

• Error detection
• Errors can occur in the CPU, memory, I/O devices, or user

programs.
• The OS takes appropriate actions to keep computing correct

and consistent.
• Debugging facilities help users and programmers work

efficiently.
• Resource allocation

• With multiple users or concurrent jobs, the OS allocates
resources to each.

• Resources include CPU time, main memory, file storage, and I/O
devices.

Recap OS Structure System Call Objects File Descriptors and Pipes 7 / 61

Operating System Services (Cont.)

• Logging
• Track which users use which resources and how much.

• Protection and security
• Control access to information in multiuser or networked

systems.
• Ensure concurrent processes do not interfere with each other.
• Protection means all access to system resources is controlled.
• Security requires user authentication and defends external

devices from invalid access.

Recap OS Structure System Call Objects File Descriptors and Pipes 8 / 61

OS Architecture: Kernel Space and User Space

Recap OS Structure System Call Objects File Descriptors and Pipes 9 / 61

Kernel Space V.s. User Space

Kernel space
• The OS kernel runs here with

the highest privilege.
• Function: Manage CPU,

memory, and device drivers.
• Security: Kernel bugs can

crash the whole system.
• Access: Only kernel mode

code can touch kernel
memory.

User space
• Regular applications run

here with lower privilege.
• Function: Run apps such

as browsers and editors.
• Security: App bugs usually

crash only that process.
• Access: User code cannot

access kernel memory, it
must use system calls.

Recap OS Structure System Call Objects File Descriptors and Pipes 10 / 61

OS Structure

• A general-purpose OS is a very large program.
• There are several common structures:

• Simple structure (MS-DOS).
• Monolithic UNIX (more complex but modular).
• Layered structure (build abstractions in layers).
• Microkernel (e.g., Mach).

Recap OS Structure System Call Objects File Descriptors and Pipes 11 / 61

Monolithic Structure: The Original UNIX Design

• UNIX was limited by the hardware of its time.
• The original UNIX used a simple structure with minimal

organization.
• Two parts:

• System programs.
• The kernel.

• The kernel:
• Sits between system calls and the hardware.
• Manages the file system, CPU scheduling, memory, and other

OS functions in one layer.

Recap OS Structure System Call Objects File Descriptors and Pipes 12 / 61

Traditional UNIX System Structure

Beyond simple, not fully layered.

Dennis Ritchie stands over
Ken Thompson as he works on
the PDP-11 in 1972. Courtesy

Bell Labs

Recap OS Structure System Call Objects File Descriptors and Pipes 13 / 61

Linux System Structure
Monolithic plus modular design

Linus Torvalds Quote
“As Sara and I used to say, just give Linus a spare closet with a

good computer in it and feed him some dry pasta, and he’ll
be perfectly happy.” (Just for Fun: The Story of an Accidental

Revolutionary. Linus Torvalds and David Diamond.
HarperBusiness, 2001 (paperback 2002).)

Curiosity Is All You Need.
Attention Is All You Need As Well.

Recap OS Structure System Call Objects File Descriptors and Pipes 14 / 61

https://arxiv.org/pdf/1706.03762

Layered Approach
• The operating system is divided into a number of layers

(levels), each built on top of lower layers.
• The bottom layer (layer 0), is the hardware; the highest (layer

N) is the user interface.
• With modularity, layers are selected such that each uses

functions (operations) and services of only lower-level layers.

Recap OS Structure System Call Objects File Descriptors and Pipes 15 / 61

Microkernels
• Moves as much from the kernel into user space.
• Communication takes place between user modules using

message passing.
• Benefits: Easier to extend a microkernel, easier to port the

operating system to new architectures, more reliable, and
more secure (less code is running in kernel mode).

• Detriments: Performance overhead of user space to kernel
space communication

Recap OS Structure System Call Objects File Descriptors and Pipes 16 / 61

Modules

• Many modern operating systems implement loadable kernel
modules (LKMs).

• Uses object-oriented approach
• Each core component is separate
• Each talks to the others over known interfaces
• Each is loadable as needed within the kernel

• Overall, similar to layers but with more flexible
• Linux, Solaris, etc.

Recap OS Structure System Call Objects File Descriptors and Pipes 17 / 61

Hybrid Systems

• Most modern operating systems are not one pure model
• Hybrid combines multiple approaches to address performance,

security, usability needs
• Linux and Solaris kernels in kernel address space, so monolithic,

plus modular for dynamic loading of functionality
• Windows mostly monolithic, plus microkernel for different

subsystem personalities
• Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa

programming environment

Recap OS Structure System Call Objects File Descriptors and Pipes 18 / 61

macOS and iOS Structure

• Below is kernel consisting of Mach microkernel and BSD Unix
parts, plus I/O kit and dynamically loadable modules (called
kernel extensions)

Recap OS Structure System Call Objects File Descriptors and Pipes 19 / 61

Android
• Developed by Open Handset Alliance

(mostly Google) - Open Source
• Similar stack to iOS
• Based on Linux kernel but modified

• Provides process, memory,
device-driver management

• Adds power management
• Runtime environment includes core set

of libraries and Dalvik virtual machine
• Apps developed in Java plus Android

API
• Java class files compiled to Java

bytecode then translated to
executable thnn runs in Dalvik VM

• Libraries include frameworks for web
browser (webkit), database (SQLite),
multimedia, smaller libc

Recap OS Structure System Call Objects File Descriptors and Pipes 20 / 61

In-Class Quiz

Current trends in operating system kernel design
favor a hybrid approach. This approach is based
on which type of kernel, and what is the main
reason driving this trend?

1 Microkernel, driven by the rise of distributed
networks.

2 Monolithic kernel, due to security concerns.
3 Layered kernel, due to power efficiency.
4 Modular kernel, due to development

complexity.

Recap OS Structure System Call Objects File Descriptors and Pipes 21 / 61

System Call

Recap OS Structure System Call Objects File Descriptors and Pipes 22 / 61

syscall
Read the Man Pages
• man 2 syscalls: lists all system calls. Online:

man7: syscalls(2).
• man 2 syscall: describes the generic syscall() interface.

Online: man7: syscall(2).
• You will see x86-64 syscall rax This means that

on x86/64 the system call number must be placed in RAX (64-bit
OS) or EAX (32-bit OS).

• You can also use Linux syscall table to see that 60 corresponds
to exit.

• That is why "mov $60, %eax\n"

void _start() {
__asm__("mov $60, %eax\n" // syscall: exit

"xor %edi, %edi\n" // status: 0
"syscall");

}

Recap OS Structure System Call Objects File Descriptors and Pipes 23 / 61

https://man7.org/linux/man-pages/man2/syscalls.2.html
https://man7.org/linux/man-pages/man2/syscall.2.html
https://filippo.io/linux-syscall-table/

The state machine perspective on programs

Program =
Computation → syscall→ Computation → syscall→ ...

Recap OS Structure System Call Objects File Descriptors and Pipes 24 / 61

The Right Tool: Trace

What is tracing?
In general, trace refers to the process of following anything from
the beginning to the end. For example, the traceroute command
follows each of the network hops as your computer connects to
another computer.

System call trace (strace)
• Understand how a program interacts with the OS.
• Observe the system calls made while the program runs.
• Demo: try the smallest possible Hello World and inspect its

calls.

Recap OS Structure System Call Objects File Descriptors and Pipes 25 / 61

To observe system calls:

$ strace -f gcc helloworld.c

• You will see many complex lines. This is normal.
• Do not give up!
• Ask ChatGPT for help: “This strace output is too complex.

Please make it more readable.”
• Refine your question until the explanation is clear.

Recap OS Structure System Call Objects File Descriptors and Pipes 26 / 61

To observe system calls (Cont.):

Save the output to a text file

strace -f gcc helloworld.c 2> gcc_trace.txt

Then tell students
• Share gcc trace.txt with ChatGPT and ask for a clear

summary.
• This makes the output readable and improves your efficiency.
• In the AI era, the cost of persistence is small, and the cost

of giving up is large.

Recap OS Structure System Call Objects File Descriptors and Pipes 27 / 61

Any Program in the Operating System

Any program is a state machine
• The OS always loads the program.
• Another process calls execve to set the initial state.
• The program runs as a state machine with computation and system

calls.
• Process management: fork, execve, exit.
• File and device I/O: open, close, read, write.
• Memory management: mmap, brk.

• The program finally exits by calling exit or exit group.

Takeaway: browsers, games, antivirus, and malware all use the same OS
APIs.

Recap OS Structure System Call Objects File Descriptors and Pipes 28 / 61

Hands-on: Observe Program Execution

Tool program: the compiler (gcc)
• Run strace -f gcc helloworld.c. gcc starts other processes.
• You can pipe source into an editor like vim -. VS Code also works.
• In Vim you can filter text with :%!grep.
• The right toolchain matters for developers.

GUI program: the editor (xedit)
• Run strace xedit.
• A GUI program talks to the X server using the X11 protocol.
• In a VM, xedit sends X11 commands through ssh with X11

forwarding to the host.

Recap OS Structure System Call Objects File Descriptors and Pipes 29 / 61

Formula view: Program vs. Operating System

• Program = Computation + System Call
• The system call interface is the bridge between a program and

the operating system.

Operating System = System Call + ?

Recap OS Structure System Call Objects File Descriptors and Pipes 30 / 61

Objects
Operating System = System Call + Objects

Recap OS Structure System Call Objects File Descriptors and Pipes 31 / 61

What objects exist in an
Operating System?

Recap OS Structure System Call Objects File Descriptors and Pipes 32 / 61

Objects in the Operating System

Processes
• A process can be viewed as a state machine
• Process management APIs: fork, execve, exit

Contiguous Memory Regions
• We can treat a contiguous memory region as an object

• Shared across processes
• Or mapped to files

• Memory management APIs: mmap, munmap, mprotect, msync

We will spend about half of the course studying these objects,
but the OS certainly has other objects as well!

Recap OS Structure System Call Objects File Descriptors and Pipes 33 / 61

Files and Devices

Files: Named Data Objects
• Byte streams (e.g., terminal, random)
• Byte sequences (regular files)

Recap OS Structure System Call Objects File Descriptors and Pipes 34 / 61

How to View Devices in Unix?
$ ls -l /dev
total 0
lrwxrwxrwx 1 root root 11 Aug 28 14:29 core -> /proc/

kcore
lrwxrwxrwx 1 root root 13 Aug 28 14:29 fd -> /proc/

self/fd
crw-rw-rw- 1 root root 1, 7 Aug 28 14:29 full
drwxrwxrwt 2 root root 40 Aug 28 14:29 mqueue
crw-rw-rw- 1 root root 1, 3 Aug 28 14:29 null
lrwxrwxrwx 1 root root 8 Aug 28 14:29 ptmx -> pts/

ptmx
drwxr-xr-x 2 root root 0 Aug 28 14:29 pts
crw-rw-rw- 1 root root 1, 8 Aug 28 14:29 random
drwxrwxrwt 2 root root 40 Aug 28 14:29 shm
lrwxrwxrwx 1 root root 15 Aug 28 14:29 stderr -> /

proc/self/fd/2
lrwxrwxrwx 1 root root 15 Aug 28 14:29 stdin -> /proc

/self/fd/0
lrwxrwxrwx 1 root root 15 Aug 28 14:29 stdout -> /

proc/self/fd/1
crw-rw-rw- 1 root root 5, 0 Aug 28 14:31 tty
crw-rw-rw- 1 root root 1, 9 Aug 28 14:29 urandom
crw-rw-rw- 1 root root 1, 5 Aug 28 14:29 zero

Recap OS Structure System Call Objects File Descriptors and Pipes 35 / 61

Devices in Unix?

The /dev directory contains special files that represent devices.

crw-rw-rw- 1 root root 1, 9 Aug 28 14:29 urandom

The first letter shows the type:
• c = character device
• b = block device
• - = regular file

Recap OS Structure System Call Objects File Descriptors and Pipes 36 / 61

Let’s take a closer look at these devices

$ cat /dev/urandom
$ ls -l /dev/urandom
crw-rw-rw- 1 root root 1, 9 Aug 28 14:29 /dev/urandom
$ touch /tmp/a.c
$ ls -l /tmp/a.c
-rw-r--rw- 1 vscode vscode 0 Aug 28 14:41 /tmp/a.c

Question:
Are these (/dev/null and /dev/urandom) files or devices?

Recap OS Structure System Call Objects File Descriptors and Pipes 37 / 61

Exercise: File or Device?

They are both.

In Unix, Everything is a file.

Devices are also represented as files.

The leading c means character device: data is consumed or
generated as a stream.
For example:
• /dev/null: Data written disappears, reading gives nothing.
• /dev/urandom: Reading produces an endless stream of

random bytes using cat /dev/urandom

Recap OS Structure System Call Objects File Descriptors and Pipes 38 / 61

a.out is also a file

Ask like a ChatGPT: I have an a.out file, how can I explore what’s
inside?

$ gcc helloworld.c
$./a.out
$ file a.out
$ strings a.out

Don’t have file installed? Run:

$ sudo apt-get update
$ sudo apt-get install -y file

Recap OS Structure System Call Objects File Descriptors and Pipes 39 / 61

Ask ChatGPT: What is inside a.out?

Computer Science is a human-made science of
tools that anyone can copy.

• With AI, your gap to top experts can be very
small!

Recap OS Structure System Call Objects File Descriptors and Pipes 40 / 61

File Descriptors and Pipes

Recap OS Structure System Call Objects File Descriptors and Pipes 41 / 61

What exactly does ls / print?

• / root
• /bin, /sbin — essential user and system programs
• /usr/bin, /usr/sbin — non-essential programs
• /lib, /lib64, /usr/lib — shared libraries
• /etc — system configuration
• /home — user home directories
• /var — logs, spool, caches
• /tmp — temporary files
• /dev — device files
• /proc, /sys — kernel and process views
• /media, /mnt — mount points
• /opt — add-on software

Recap OS Structure System Call Objects File Descriptors and Pipes 42 / 61

What files does an OS have?
Filesystem Hierarchy Standard (FHS)
• Enables software and users to predict the locations of installed

files and directories on Linux systems.
• Defines common directories such as /bin, /etc, /usr, /var,
/home, and others.

• Not every operating system follows FHS. For example, macOS
does not conform.

Recap OS Structure System Call Objects File Descriptors and Pipes 43 / 61

https://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html

Fun Fact: If the files are right, the OS boots

Idea: Get the right files in the right places and the system will run.
1 Create an EFI System Partition (UEFI) and copy the correct

loader.
2 Create a filesystem on the root partition: mkfs ...

3 Copy the root filesystem while preserving metadata: cp -aR
SRC/ DST/

• Check /etc/fstab for correct UUIDs.
• You now have a bootable disk.

4 Mount required virtual filesystems at runtime.
• On disk, /dev, /proc, /sys are empty.
• Example: mount -t proc proc /mnt/proc

That is why a bootable USB works.

Recap OS Structure System Call Objects File Descriptors and Pipes 44 / 61

Anything Readable or Writable Can Be a File

Real devices
• /dev/sda, /dev/tty

Virtual devices (special files)
• /dev/urandom (random bytes), /dev/null (bit bucket)

• There is no real on-disk file behind them
• The OS implements custom read and write handlers
• Linux source: drivers/char/mem.c

• You can control hardware via /sys, e.g.,
/sys/class/backlight to control screen brightness.

Also: procfs follows the same idea. Programs use the same APIs
to access them.

Recap OS Structure System Call Objects File Descriptors and Pipes 45 / 61

https://elixir.bootlin.com/linux/v6.14-rc5/source/drivers/char/mem.c#L430

File Descriptors

• A “pointer” to operating system objects
• Everything is a file
• Through a descriptor, you can access “everything”

• All object access requires a descriptor
• APIs: open, close, read/write, lseek (offset manipulation),
dup (duplicate descriptor)

$ man 2 read

DESCRIPTION top
read() attempts to read up to count bytes from

file descriptor fd
into the buffer starting at buf.

Recap OS Structure System Call Objects File Descriptors and Pipes 46 / 61

https://man7.org/linux/man-pages/man2/read.2.html

File Descriptors: The “Pointer” to Access Files
• open

• p = malloc(sizeof(FileDescriptor));
• Like malloc, open allocates a new resource managed by the

OS.
• close

• delete(p);
• Like delete, close releases the resource so it can no longer be

used.
• read/write

• *(p.data++);
• Similar to dereferencing a pointer, read/write moves data

through the descriptor.
• lseek

• p.data += offset;
• Just like changing a pointer offset, lseek changes the file

position.
• dup

• q = p;
• Like copying a pointer, dup creates another reference to the

same file object.

File descriptors behave like pointers: they do not store the data themselves, but
point to OS-managed objects.
Recap OS Structure System Call Objects File Descriptors and Pipes 47 / 61

Inspecting File Descriptors via /proc
Goal: Use the /proc/<pid>/fd directory to see what a process is
connected to.

$ ps
PID TTY TIME CMD
4792 pts/1 00:00:00 bash
9025 pts/1 00:00:00 cat

14810 pts/1 00:00:00 ps

$ ls -l /proc/4792/fd
lrwx------ 1 vscode vscode 64 ... 0 -> /dev/pts/1
lrwx------ 1 vscode vscode 64 ... 1 -> /dev/pts/1
lrwx------ 1 vscode vscode 64 ... 2 -> /dev/pts/1
l-wx------ 1 vscode vscode 64 ... 22 -> ˜/.vscode-

remote/.../ptyhost.log
l-wx------ 1 vscode vscode 64 ... 24 -> ˜/.vscode-

remote/.../remoteTelemetry.log
l-wx------ 1 vscode vscode 64 ... 25 -> ˜/.vscode-

remote/.../remoteagent.log
lrwx------ 1 vscode vscode 64 ... 26 -> /dev/pts/ptmx
lrwx------ 1 vscode vscode 64 ... 255 -> /dev/pts/1Recap OS Structure System Call Objects File Descriptors and Pipes 48 / 61

Inspecting File Descriptors via /proc

lrwx------ 1 vscode vscode 64 ... 0 -> /dev/pts/1
lrwx------ 1 vscode vscode 64 ... 1 -> /dev/pts/1
lrwx------ 1 vscode vscode 64 ... 2 -> /dev/pts/1
l-wx------ 1 vscode vscode 64 ... 22 -> ˜/.vscode-

remote/.../ptyhost.log
l-wx------ 1 vscode vscode 64 ... 24 -> ˜/.vscode-

remote/.../remoteTelemetry.log
l-wx------ 1 vscode vscode 64 ... 25 -> ˜/.vscode-

remote/.../remoteagent.log
lrwx------ 1 vscode vscode 64 ... 26 -> /dev/pts/ptmx
lrwx------ 1 vscode vscode 64 ... 255 -> /dev/pts/1

• Each process exposes its open files under /proc/<pid>/fd/.
• 0, 1, 2 are stdin, stdout, stderr. Here they point to the

terminal /dev/pts/1.
• The terminal is a device file. Unix treats devices as files.

Recap OS Structure System Call Objects File Descriptors and Pipes 49 / 61

Inspecting File Descriptors via /proc

lrwx------ 1 vscode vscode 64 ... 0 -> /dev/pts/1
lrwx------ 1 vscode vscode 64 ... 1 -> /dev/pts/1
lrwx------ 1 vscode vscode 64 ... 2 -> /dev/pts/1
l-wx------ 1 vscode vscode 64 ... 22 -> ˜/.vscode-

remote/.../ptyhost.log
l-wx------ 1 vscode vscode 64 ... 24 -> ˜/.vscode-

remote/.../remoteTelemetry.log
l-wx------ 1 vscode vscode 64 ... 25 -> ˜/.vscode-

remote/.../remoteagent.log
lrwx------ 1 vscode vscode 64 ... 26 -> /dev/pts/ptmx
lrwx------ 1 vscode vscode 64 ... 255 -> /dev/pts/1

• Extra descriptors show other connections. Here 22{25 point to
log files, 26 to /dev/pts/ptmx (the pseudoterminal
multiplexer).

• 255 is an internal descriptor created by bash. It often
duplicates a terminal handle.

Recap OS Structure System Call Objects File Descriptors and Pipes 50 / 61

How File Descriptors Are Allocated

Rule: The OS assigns the lowest-numbered unused descriptor.
• 0, 1, 2 are standard input, output, and error.
• New descriptors usually start at 3.
• A descriptor is an index into the process’s file-descriptor table.
• After close(), the number can be reused.
• Try It: 4 fd.c

How many files can a process open?
• Per-process limit: ulimit -n (ulimit -Hn for the hard limit).
• System-wide maximum handles: sysctl fs.file-max or
cat /proc/sys/fs/file-max.

Recap OS Structure System Call Objects File Descriptors and Pipes 51 / 61

https://github.com/FSU-COP4610-F25/in-class-code

Offset in File Descriptors

A file descriptor is part of the process state
• It lives in the kernel. A program accesses it only by an integer

index.
• Each file descriptor has its own current offset.

Quiz: After fork() and dup(), do the file descriptors share the
offset?
• Yes. After fork() or dup(), the file descriptors share the

offset.
• But ...
• Try It: 4 fd.c

Recap OS Structure System Call Objects File Descriptors and Pipes 52 / 61

https://github.com/FSU-COP4610-F25/in-class-code

How the OS avoids overwrite
If the offset were handled poorly

• Two writers could start at the same position.
• New data could overwrite old data.

What the OS actually does
• The kernel keeps one open file description that holds the file offset

and flags.
• dup() and fork() create descriptors that point to the same open

file description.
• Each write() updates the shared offset atomically, so two writes do

not write the same bytes. The order may be different from what you
expect.

When you need other behavior
• Open the file again to get an independent offset.
• Use O APPEND to append safely across processes.
• Use pwrite() to write at a fixed position without changing the

offset.
Recap OS Structure System Call Objects File Descriptors and Pipes 53 / 61

Windows: File Handles

Handle
• An opaque reference to a kernel object, not a memory pointer.
• Plays a role similar to Unix file descriptors for I/O.
• Created with CreateFile and closed with CloseHandle.

Recap OS Structure System Call Objects File Descriptors and Pipes 54 / 61

Windows Process Creation
Engineering-minded design
• By default handles are not inherited. In Unix descriptors

inherit by default.
• A child only receives inheritable handles if
CreateProcess(..., bInheritHandles=TRUE, ...).

• Make a handle inheritable at creation:
SECURITY ATTRIBUTES.bInheritHandle=TRUE.

• Or change it later: SetHandleInformation(h,
HANDLE FLAG INHERIT, HANDLE FLAG INHERIT).

• Follow the principle of least privilege.

Now, Linux added close-on-exec for security.
• Descriptors inherit on fork. They stay open on exec unless

flagged.
• Set at open time: open(..., O CLOEXEC).
• Or set later: fcntl(fd, F SETFD, FD CLOEXEC).

Recap OS Structure System Call Objects File Descriptors and Pipes 55 / 61

Anything Readable or Writable Can Be a File (cont.)

Pipes: a special kind of “file” (stream)
• Shared by a reader and a writer
• Read end supports read; write end supports write

Anonymous pipe

int pipe(int pipefd[2]); // pipefd[0] = read end,
pipefd[1] = write end

• Returns two file descriptors
• One process holds both ends at first
• After fork(), parent and child can share them
• Typical use: close unused ends, then connect with dup2()

A pipe behaves like a stream. Reading consumes bytes. Writing produces bytes.
When all writers close, readers see EOF.

Recap OS Structure System Call Objects File Descriptors and Pipes 56 / 61

Try It

$ ls
$ ls | wc -l
$ touch a.txt
$ ls > a.txt
$ cat a.txt

Recap OS Structure System Call Objects File Descriptors and Pipes 57 / 61

What are file descriptors good for?

Byte streams
• Sequential read and sequential write.
• The reader waits when no data is available.
• Typical example: a pipe.

Byte sequences (random access files)
• Possible but less convenient with plain read/write.
• You must lseek to a position then read or write.
• mmap lets you access bytes through a pointer.
• madvise and msync give finer control.

Recap OS Structure System Call Objects File Descriptors and Pipes 58 / 61

https://man7.org/linux/man-pages/man2/lseek.2.html

Rethinking “Everything is a File”

Pros
• Elegant and uniform abstraction.
• Text interfaces are easy to use.

Cons
• Tight coupling with many APIs.

• Example: a fork() in the road.
• Not friendly to high-speed devices.

• Extra latency and memory copies.
• Single-threaded I/O path.

Recap OS Structure System Call Objects File Descriptors and Pipes 59 / 61

https://www.microsoft.com/en-us/research/wp-content/uploads/2019/04/fork-hotos19.pdf

Way out: API and Wrapping
Another level of indirection
Any problem in computer science can be solved with another level of
indirection.
Butler Lampson

Examples
• Windows NT: Win32 API with a POSIX subsystem. Today we have

Windows Subsystem for Linux (WSL).
• macOS: Cocoa API on top of a BSD subsystem.
• Fuchsia: Zircon microkernel with a POSIX compatibility layer.

Limits of compatibility
• No system reaches 100% compatibility.
• Virtual filesystems like /proc and /sys do not map cleanly.
• WSL1 looked elegant but broke in many real cases.
• Two directions exist: “Windows Subsystem for Linux” and “Linux

Subsystem for Windows” (Wine).
Recap OS Structure System Call Objects File Descriptors and Pipes 60 / 61

Takeaways: Program, OS, and Objects

Program = Computation + System Call
Operating System = Objects + System Call
• The system-call interface links programs and the OS.
• In UNIX, everything is a file.
• In UNIX, resources look like files and are controlled by file

descriptors.
• Pipes connect programs by wiring one FD’s output to another

FD’s input.

Recap OS Structure System Call Objects File Descriptors and Pipes 61 / 61

	Recap
	OS Structure
	System Call
	Objects
	File Descriptors and Pipes

