
Lecture 2: Hello, OS World!
Viewing Operating Systems from Multiple Angles

Xin Liu

Florida State University
xliu15@fsu.edu

COP 4610 Operating Systems
https://xinliulab.github.io/FSU-COP4610-Operating-Systems/

mailto:xliu15j@fsu.edu
https://xinliulab.github.io/FSU-COP4610-Operating-Systems/


Programs Running on the
Operating System

Application Perspective Smallest Program Tool 1 / 25



What is an Operating System?

Operating System: A body of software, in fact, that is respon-
sible for making it easy to run programs (even allowing you to
seemingly run many at the same time), allowing programs to
share memory, enabling programs to interact with devices, and
other fun stuff like that. (Operating Systems: Three Easy Pieces)

To understand an “Operating System”, you must understand
what a “program” is
• This course explains OS from an application-driven perspective

Application Perspective Smallest Program Tool 2 / 25



Hello, World!

#include <stdio.h>
int main()
{

printf("Hello, World!");
return 0;

}

From this point on,
you began your journey as a

PROGRAMMER.
• Try It: 1 helloworld.c
• How to make your code

readable?
• Ctrl+Shift+P
• Search "Format Document".

Application Perspective Smallest Program Tool 3 / 25

https://github.com/FSU-COP4610-F25/in-class-code


Each Step of Compilation

What it does and what you get
1 Preprocessor: Expands macros and

includes headers.
gcc -E hello.c -o hello.i
Output: hello.i

2 Compiler: Translates C into assembly.
gcc -S -O0 hello.c -o hello.s
Output: hello.s

3 Assembler: Converts assembly to an
object file.
gcc -c hello.s -o hello.o
Output: hello.o

4 Linker: Links object files and libraries
into an executable.
gcc hello.o -o hello
Output: hello

Application Perspective Smallest Program Tool 4 / 25



Computer Programs

#include <stdio.h>

int main() {
int a = 1;
int b = 1;
int c = a + b;

printf("%d + %d = %d\n", a, b, c);
}

• Try It: 2 abc.c

Computer: A machine that executes instructions without
emotion
• The machine is always ”correct”
• If the compiler does not optimize, blue“it executes exactly what

we write”

Application Perspective Smallest Program Tool 5 / 25

https://github.com/FSU-COP4610-F25/in-class-code


Compiler Optimization

If the compiler does not optimize, “it executes exactly what we
write”
• What might a compiler optimize in this code?
• Try It Again: 2 abc.c

Application Perspective Smallest Program Tool 6 / 25

https://github.com/FSU-COP4610-F25/in-class-code


Bonus Time: 0.5 Extra-Credit Points

How many compilers are there in our computers?

Application Perspective Smallest Program Tool 7 / 25



Understanding “Computer Programs”
Everything is a state machine.
• Every program runs on a computer
• The computer is a state machine
• Program execution is state transition

State Machine Model in C
• PicoC: a very small C interpreter for scripting; supports

step-by-step execution

while (1) {
stmt = next_statement();
execute(stmt);

}

Application Perspective Smallest Program Tool 8 / 25

https://github.com/jpoirier/picoc


AI Teacher Takes the Stage

Can we really turn those imaginative ideas into reality?
• In the AI era: If you can imagine it, you can build it
• GDB debugging used to be tedious
• But now, tedious tasks no longer require human labor

• Even in the future, almost nothing may need humans

Given a Python script that executes GDB step by step and
generates a plot.md, embedding the state transition of main()
execution (tracked by local variables only), where each step
denotes a transition. Executed statements are visualized line by
line with highlighted blocks.

Application Perspective Smallest Program Tool 9 / 25



Rewrite Any Program Into Non-Recursive Form

Any C Code Can Be Rewritten as Equivalent “SimpleC”
• Each statement does one operation (A function call also counts

as one operation)
• Conditional statements contain no operations.
• There is a real tool for this(C Intermediate Language) and an

interpreter.

Everything (a C Program) Is a State Machine
• State = variable values + stack
• Initial state = the first statement of main
• State transition = execute a small step of one statement

Application Perspective Smallest Program Tool 10 / 25

https://cil-project.github.io/cil/
https://gitlab.com/zsaleeba/picoc


Program = State Machine

A “state machine” is a mathematically rigorous object. This means
you can formally define it and reason about it rigorously.

State:
• A list of stack frames [StackFrame, StackFrame, . . . ] plus global

variables
Initial State:
• Only one stack frame: main(argc, argv, PC=0)

• All global variables are initialized
State Transition:
• Execute the simple statement at frames[-1].PC

Application Perspective Smallest Program Tool 11 / 25



This Is All of C (Formal Semantics)

With this semantics, we can implement any pure computation:

• From simple to complex: strlen, strstr, memcpy, sprintf,
...

But some things cannot be implemented:
• Some behaviors of the standard library go beyond “pure

computation”
• Examples: putchar, exit

• Observation: Pure computation only changes internal program
state

• But these APIs involve “external state” beyond the program
• This is the topic of the Operating Systems course.

Application Perspective Smallest Program Tool 12 / 25



The Smallest Program on
an Operating System

Let’s try: What Exactly Changes a Program’s State from the Outside?

Application Perspective Smallest Program Tool 13 / 25



What Is a Program? (After Compilation)

A Minimal CPU State (i.e., your a.out):

struct CPUState {
uint32_t regs[32], csrs[CSR_COUNT];
uint8_t *mem;
uint32_t mem_offset, mem_size;

};

Processor: A cold, instruction-executing state machine
• Fetch an instruction from M[PC]

• Execute it
• Repeat

Application Perspective Smallest Program Tool 14 / 25



Can We Gain Control of the Program from the Start?

Building the “Smallest” Program
• Gain control from the very beginning of the program
• According to Computer Systems: A Programmer’s Perspective, a

program starts executing from start

• Try It: 4 smallest.c

void _start() {
// ...

}

Let AI Help You Seize Control
• I defined start, how do I compile and run the program

directly from start?
• gcc -nostartfiles -static -nostdlib 4 smallest.c

Application Perspective Smallest Program Tool 15 / 25

https://github.com/FSU-COP4610-F25/in-class-code


Building the “Smallest” Program

void _start() {
// ...

}

• But this program causes a Segmentation Fault — why?
• Again, please ask our AI teacher.

void _start() {
__asm__("mov $60, %eax\n" // syscall: exit

"xor %edi, %edi\n" // status: 0
"syscall");

}

Application Perspective Smallest Program Tool 16 / 25



(Binary) Program = State Machine
State
• Your C code compiles to assembly that executes on a machine

state.
• A program state is the combination of memory and registers.
• In gdb, you can inspect this state (memory and registers).

Initial State
• Defined by the ABI (e.g., a valid %rsp)
• What else is defined by ABI (Application Binary Interface)?

State Transitions
• Executing an instruction
• All instructions change only the program’s internal state

(memory and registers), except the instruction syscall.
• gdb can observe the execution of the state machine step by step

• syscall instruction: hands over the state machine to the
operating system.

Application Perspective Smallest Program Tool 17 / 25

https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf


syscall
Read the Man Pages
• man 2 syscalls: lists all system calls. Online:

man7: syscalls(2).
• man 2 syscall: describes the generic syscall() interface.

Online: man7: syscall(2).
• You will see x86-64 syscall rax .... This means that

on x86/64 the system call number must be placed in RAX (64-bit
OS) or EAX (32-bit OS).

• You can also use Linux syscall table to see that 60 corresponds
to exit.

• That is why "mov $60, %eax\n"

void _start() {
__asm__("mov $60, %eax\n" // syscall: exit

"xor %edi, %edi\n" // status: 0
"syscall");

}

Application Perspective Smallest Program Tool 18 / 25

https://man7.org/linux/man-pages/man2/syscalls.2.html
https://man7.org/linux/man-pages/man2/syscall.2.html
https://filippo.io/linux-syscall-table/


Applications Running on Top
of the Operating System

Application Perspective Smallest Program Tool 19 / 25



What We Perceive as the “Operating System”
• As users, we do not perceive the operating system itself.
• We only interact with programs running on top of the OS

(processes).

Application Perspective Smallest Program Tool 20 / 25



Visible Programs: Applications

Development
• Integrated Development Environments: VSCode, Cursor, ...
• Programming Tools: gcc, clang, nodejs, gdb, ...
• Terminal Tools: tmux, vim, htop, ...

Daily Use
• Office: LibreOffice, GIMP, ...
• Browsers: Chrome, Firefox, ...
• Media: OBS, VLC, ...

Application Perspective Smallest Program Tool 21 / 25



Visible (Background) Programs: Utilities

Core Utilities (coreutils)
• Standard programs for text and file manipulation
• The default installation is GNU Coreutils
• Lightweight alternatives: busybox, toybox

System Utilities: Essential and Powerful
• Shell, binutils, ...
• Package management: apt, dpkg, ...
• Networking: ip, ssh, curl, ...
• Multimedia: ffmpeg, gstreamer, ...

Application Perspective Smallest Program Tool 22 / 25

https://www.gnu.org/software/coreutils/
https://busybox.net/
https://landley.net/toybox/
https://sourceware.org/binutils/


Invisible Programs: Background Processes

Daemon Processes
• The omnipresent systemd

• systemd-network, systemd-logind, systemd-udevd, ...
• System management: cron, udisksd, unattended-upgrade

(loathed), ...
• Services: httpd, sshd, ...
• Security modules: auditd, firewalld, ...
• User services: pulseaudio, dbus-daemon, ...

Graphics and Media
• Wayland compositor: xfce4, lxde, ...
• Pulseaudio, pipewire, video4linux, ...

Application Perspective Smallest Program Tool 23 / 25



Therefore, all these programs...

Any difference from 4 smallest.c?
• Short answer: No
• Any program = 4 smallest.c = state machine

Executable files are OS objects
• Essentially no difference from the binary file a.out
• Let’s examine the ”programs” mentioned above in the

command line
• Don’t worry even if it’s your first time touching the command

line...
• Ask like a ChatGPT: I have an a.out file, how can I explore

what’s inside?

Application Perspective Smallest Program Tool 24 / 25



Takeaways: Everything Is a State Machine
• Both high-level code and machine code can be viewed as state

machines.
• A compiler acts as a translator between two types of state

machines.
• Without an operating system, state machines can only perform

pure computation.
• They can’t even communicate results to the outside world.
• The only bridge between a program and the OS is through

system calls.
• On x86-64, this bridge is built on the syscall instruction.
• Because system calls are so important, the OS provides tools

to observe them.
• For example, strace can track a program’s system call

sequence during execution.
• We’ll dive into this in the next lecture.

Application Perspective Smallest Program Tool 25 / 25


	Application Perspective
	Smallest Program
	Tool

